

Water Resources Data Minnesota Water Year 1991

Volume 2. Upper Mississippi and Missouri River Basins

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-91-2 Prepared in cooperation with the Minnesota Department of Natural Resources, Division of Waters; the Minnesota Department of Transportation; and with other State, municipal, and Federal agencies

CALENDAR FOR WATER YEAR 1991

									1	1990)									
	· · · · · ·	OC 1	гове	R	7				NOV	/EME	BER					DE	CEMI	BER		
S	M	Т	W	T	F	S	S	M	Т	W	T	F	S	S	M	T	W	T	F	S
21	1 8 15 22 29	23	24		5 12 19 26	20	4 11 18 25		6 13 20 27				3 10 17 24	23	3 10 17 24 31		5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29
							भारता (१)			199	1									
		J	ANU	ARY					FI	EBRI	JAR	1				1	MAR	СН		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
20	7 14 21 28	22	23	24	18	19	3 10 17 24		5 12 19 26	20		1 8 15 22	2 9 16 23	5 10 17 24 31		5 12 19 26		7 14 21 28	1 8 15 22 29	2 9 16 23 30
		1	APR:	IL						MA	1						JUNI	E		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
21	15	16 23	17	18	19	6 13 20 27		13 20	14 21	22	16 23	17 24	25	16	10 17	11 18	19	13 20	7 14 21 28	22
			JUL	1					Al	JGU:	T					SEI	PTE	MBE	R	
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
21	15	9 16 23	17 24	11 18	19	6 13 20 27	11 18	12 19	13	14 21	8 15 22	9 16 23	17 24	8 15 22	9 16	10 17 24	11 18	12 19		14 21

Water Resources Data Minnesota Water Year 1991

Volume 2. Upper Mississippi and Missouri River Basins

by Kurt T. Gunard, Joseph H. Hess, and James L. Zirbel

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-91-2 Prepared in cooperation with the Minnesota Department of Natural Resources, Division of Waters; the Minnesota Department of Transportation; and with other State, municipal, and Federal agencies

DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief, Water Resources Division U.S. Geological Survey 2280 Woodale Drive Mounds View, Minnesota 55112

PREFACE

This volume of the annual hydrologic data report of Minnesota is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Minnesota are contained in two volumes:

Volume 1. Great Lakes and Souris-Red-Rainy River Basins Volume 2. Upper Mississippi and Missouri River Basins

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the preparation of this report:

Lan H. Tornes, Water-Quality Specialist, Minnesota District Alex Brietkrietz, Ground-Water Network Project Chief, Minnesota District

Most of the data were collected, processed, and tabulated by the following individuals:

St. Paul District Office

Allan D. Arntson George H. Carlson Pierce A. Flanagan Paul E. Hanson Mark R. Have Joan M. Helms Rebecca A. Miller Gregory B. Mitton Shelley L. Morrison George A. Roach Chris A. Sanocki Charles J. Smith Gregory W. Stratton Duane A. Wicklund Thomas A. Winterstein

Grand Rapids Field Headquarters

Montevideo Field Headquarters

Howard D. Braden William A. Gothard Gregory R. Melhus Roderick L. Johnson

This report was prepared in cooperation with the State of Minnesota and with other agencies under the general supervision of George Garklavs, District Chief, Minnesota.

REPORT DOCUMENTATION PAGE	1. Report No. USGS/WRD/HD-92/308	2.	3. Recipient's Accession No.			
	e or Minnesota, Water Year 19 ississippi and Missourí Riv	5. Report September 1992 6.				
7. Author(s) Kurt T.	Gunard, Joseph H. Hess and	James L. Zirbel	8. Performing Organization Rept. No. USGS-MDR-MN-91-2			
		10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) (G)				
	- -	rision	13. Type of Report & Period Covered Annual Oct. 1, 1990 Sept. 30, 1991			

15. Supplementary Notes

Prepared in cooperation with the State of Minnesota and with other agencies.

16. Abstract (Limit: 200 words)

Water-resources data for the 1991 water year for Minnesota consist of records of stage, discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This volume contains discharge records for 60 gaging stations; stage and contents for 9 lakes and reservoirs; water quality for 18 stream stations, 1 lake station, 22 partial-record sites, 1 precipitation station, 108 wells; and water levels for 119 observation wells. Also included are 59 high-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program and are published as miscellaneous measurements or low-flow investigations. These data, together with the data in Volume 1, represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal Agencies in Minnesota

17. Document Analysis a. Descriptors

*Minnesota, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Precipitation, Sediments, Water temperatures, Sampling sites, Water levels, Water analyses, Data collection

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement: No restriction on distribution. This report may be purchased from:	19.	Security Class (This Report) UNCLASSIFIED	21.	No. of Pages 285
	20.	Security Class (This Page) UNCLASSIFIED	22.	Price

CONTENTS

		Pa
		i
List of s	urface-water stations, in downstream order, for which records are published in this volume	
List of g	round-water wells, by county, for which records are published in this volume	vi
	iscontinued surface-water discharge or stage-only stationsion	:
	on.	
Summary o	f hydrologic conditions	
	ipitation	
	amflow	
	r qualitynd-water levels	
	etworks and programs.	
	on of the records.	
Stat	ion identification numbers	
	Downstream order system and station number	
D	Latifude-longitude system for wells and miscellaneous sites	
Reco	rds of stage and water-discharge	
	Data presentation.	
	Station manuscript	
	Data table of daily mean values	
	Statistics of monthly mean data	:
	Summary statistics	
	Identifying estimated daily discharge	
	Accuracy of the records	
Reco	rds of surface water-quality	
	Classification of records.	
	Arrangement of records	
	Onsite measurement and sample collection	
	Water temperature	
	Sediment	
	Laboratory measurements	
	Remark codes.	
Reco	rds of ground-water levels	
	Data collection and computation.	
	Data presentation	
Reco	rds of ground-water quality	
	Data collection and computation.	
Accord to	Data presentation	
	an of terms	
	ons on Techniques of Water-Resources Investigations	
Station re	ecords, surface water	
Discl	narge at partial-record stations and miscellaneous sites	1
	High-flow partial-record stations	1
Anals	yses of samples collected at water-quality partial-record stations	1
Station re	secords, ground water	ī
Groun	nd-water levels	ĩ
Qual	ity of ground-water	2
Chemical of	quality of precipitation	2
Index		2
	ILLUSTRATIONS	
Figure 1.	Map showing precipitation, in inches, during 1991 water year compared to normal annual	
	precipitation for Minnesota	
2.	Graph showing comparison of mean discharge for the 1991 water year with mean of median	
-	discharge for 1961-90 at four long-term representative gaging stations	
3.	Graph showing comparison of dissolved solids concentrations in water year 1991 with median	
	for period of record at representative gaging stations	
4.	Graph showing comparison of nitrite plus nitrate concentrations in water year 1991 with	
5.	median for period of record at representative gaging stations	
5a.	Hydrographs showing comparison of seasonal water levels during 1991 to long-term levels in surficial sand aquifers in two representative wells	
5b.	Hydrographs showing comparison of water levels during 1991 to long-term levels in buried	
Ju.	sand and gravel aquifers in two representative wells	
5c.	Hydrographs showing comparison of water levels during 1991 to long-term levels in two	
	representative bedrock wells in the Prairie du Chien-Jordan aquifer	
5d.	Hydrographs showing comparison of water levels during 1991 to long-term levels in	
_	representative bedrock wells in the St. Peter and Franconia-Ironton-Galesville aquifers	
5e.	Hydrographs showing comparison of water levels during 1991 to long-term levels in two representative bedrock wells in the Mount Simon-Hinckley-Fond du Lac acquifer	

ILLUSTRATIONS--Continued

		Page
6.	Diagram showing system for numbering wells and miscellaneous sites	17
7.	Map showing location of lake and stream-gaging stations	34
8.	Map showing location of surface-water-quality stations	36
	Map showing location of high-flow partial-record stations	146
	Map showing location of ground-water wells	192

TABLES

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

Note.--Data for partial-record stations and miscellaneous sites for both surface-water quantity and quality are published in separate sections of the data report. See references at the end of this list for page numbers for these sections.

[Letters after station name designates type of data: (d) discharge; (e) gage height, elevation, or contents; (c) chemical, radio-chemical, or pesticides; (b) biological or mictro-biological; (p) physical (water temperature, sediment, or specific conductance)]

UPPER MISSISSIPPI RIVER BASIN Mississippi River near Bemidji	(-	е	-	-	<u>Station number</u> -)05200510 -)05201000 -)05201500	38 39 40
Williams Lake near Akeley					p)05202000	41
Leech Lake at Federal Dam					-)05206000	48
Leech Lake River at Federal Dam					-)05206500	49
Pokegama Lake near Grand Rapids					-)05210500	50
Mississippi River at Grand RapidsSANDY RIVER BASIN	(d	-	-	-	-)05211000	51
Sandy Lake at Libby	1-	_	_	_	-)05218500	52
					-)05218300	53
Sandy River at Sandy Lake Dam, at Libby	(4	_	_	_	-)05227500	54
Mississippi River at AitkinPINE RIVER BASIN						34
Pine River Reservoir at Cross Lake	(-	е	-	-	-)05230500	55
Pine River at Cross Lake Dam, at Cross Lake	(d	-	-	-	-)05231000	56
Mississippi River at Brainerd	(d	-	-	-	-)05242300	57
CROW WING RIVER BASIN Shell River:	-				·	
	1				-)05243721	58
Straight River at County Highway 125 near Osage	(a	-	_	_	-)05243721	
Straight River near Park Rapids	(d	-	-	-	-)05243725	59
Long Prairie River at Long Prairie	(d	-	-	-	-)05245100	60
Gull River:						
Gull Lake near Brainerd					-)05246500	61
Gull River at Gull Lake Dam, near Brainerd	(d	-	-	-	-)05247000	62
Crow Wing River near Pillager	(d	-	-	-	-)05247500	63
Mississippi River near Fort Ripley	(d	-	-	-	-)05261000	64
Mississippi River near Royalton					p)05267000	65
SAUK RIVER BASIN					_	
Sauk River near St. Cloud					-)05270500	68
Mississippi River at St. CloudELK RIVER BASIN	•				-)05270700	69
Elk River near Big Lake	(d	-	-	-	-)05275000	70
Crow River at Rockford	(A	_	_	_	-)05280000	71
RUM RIVER BASIN					• • • • • • • • • • • • • • • • • • • •	
Mille Lacs Lake (head of Rum River) at Cove Bay near Onamia					-)05284000	72
Rum River near St. Francis	(d	-	-	-	-)05286000	73
ELM CREEK BASIN						
Elm Creek near Champlin	(d	-	С	b	p)05287890	74
Mississippi River near Anoka	(d	-	-	-	p)05288500	77

GAGING STATIONS, IN DOWNSTREAM ORDER--Continued

						Page
UPPER MISSISSIPPI RIVER BASINContinued						
MINNESOTA RIVER BASIN					on number	
Little Minnesota River (head of Minnesota River) near Peever, SD	(d -	-	-	-)05		80
Whetstone River near Big Stone City, SD	(d -		_	-)05 -)05		81 82
Minnesota River at Ortonville	(d -		-	-)05		83
Yellow Bank River near Odessa	(d -	-	-	-)05		84
Pomme de Terre River at Appleton	(d -	-	-	-)05		85
Lac qui Parle River near Lac qui Parle	(d -		_	-)05		86 87
Chippewa River near Milan	(ď -		-	-)05		90
Minnesota River at Montevideo	(d -	·		p)05		91
Yellow Medicine River near Granite Falls	(d -		-	-)05		94
Redwood River near MarshallRedwood River near Redwood Falls	(d -		_	-)05 -)05		95 96
Cottonwood River near New Ulm.	(d -		_	p)05		97
Little Cottonwood River near Courtland	(ā -		-	-)05		99
Blue Earth River:						4.00
Watonwan River near Garden City	(d -	•	b -	p)05		100
Blue Earth River near Rapidan	(d -			-)05		103 104
Minnesota River at Mankato	ίã.	•		p)05		107
High Island Creek near Henderson	(d -	- с	b	p)05	327000	111
Minnesota River near Jordan	(d -	-				113
Mississippi River at St. Paul	(d -		- b	p)05		116 119
ST. CROIX RIVER BASIN	(-		ט	p)u.	331370	115
St. Croix River:						
Kettle River below Sandstone	(d -		-	-)05	336700	121
Snake River:				٠	227700	100
Knife River near MoraSt. Croix River at St. Croix Falls, WI	(d -	- -	_	-)05 -)05		122 123
Mississippi River at Prescott, WI			-	-)05		124
VERMIĪĪION RIVER BASIN	•			,		
Vermillion River near Empire	(d ·	- с	b	p)05	345000	125
CANNON RIVER BASIN Cannon River:						
Straight River near Faribault	(d -		_	-)05	353800	128
ZUMBRO RIVER BASIN				,		
South Fork Zumbro River at Rochester	(d ·		-	-)05	372995	129
WHITEWATER RIVER BASIN		_	1.	> 04	226000	120
North Fork Whitewater River near Elba		- c		p)0		130 134
Whitewater River near Beaver	•			p)0		136
GARVIN BROOK BASIN	•					
Garvin Brook near Minnesota City	(d ·		-	-)05		138
Mississippi River at Winona	(d -		-	p)05	378500	139
ROOT RIVER BASIN Root River near Houston	(d -		_	-)0	5385000	141
IOWA RIVER BASIN				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Iowa River:						
Cedar River near Austin	(d ·		-	-)05	5457000	142
Des Moines River at Jackson	(d ·		_	-)0	5476000	143
bob formed have the endadom,,,,	, ~			,		
* * * * * * *	*			*	*	*
Discharge at partial-record stations and miscellaneous sites						144
High-flow partial-record stations						145
Miscellaneous sites						157
Analysis of samples collected at water-quality partial-record stations	• • • • •	• • • •	• • • •			163

GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

GROUND-WATER LEVELS

					Page
ANOKA					
Well	450927093033802	Local	number	031N22W23CBC02	194
				031N24W01CBB01	194
				032N23W04AAD02	194
				033N23W05BAB01	195 195
BELTRAM		LOCAL	number	033N24W30ABB01	193
		Local	number	147N34W35ADC01	196
BIG STO		Locus	Hamber	1477047705200111111111111111111111111111111111	100
		Local	number	121N44W27CCC01	196
Well	453330096420201	Local	number	124N48W17AAA01	197
BLUE EA					
				106N28W03DBA01	197
	441134093505301	Local	number	108N25W04BBC01	198
BROWN	441000004434301	1		11 0 N 2 OF 12 0 D D D 0 1	199
CHIPPEW		TOCAL	number	110N32W30DDB01	199
		Local	number	119N41W29DDD01	199
				119N42W17DDD01	199
CHISAGO					
Well	453125092445401	Local	number	035N19W17BDB01	200
CROW WII					
	463006094131201	Local	number	135N28W16CCD01	200
DAKOTA					
				027N23W09ABD01	201 202
				028N22W19DCC02	202
				112N18W08ABA01	202
				112N19W30DBD01	203
				113N18W07BAC01	203
				114N17W10AAA01	204
				114N17W16CBB01	204
				114N17W33BBC01	204
				114N18W17AAB01	205
				114N18W35CCB01	205
	444220093055001	Local	number	114N19W04DAC01	206
DODGE	**********	7 1		10701701200401	206
FARIBAUI		LOCAL	number	107N17W13BBA01	200
		Local	number	104N26W36CAC01	207
FILLMORI		Tooat	Humor	1048200000001	20,
		Local	number	104N11W08ADC01	207
FREEBORI					
Well	433434093331201	Local	number	101N23W02DAC01	207
				102N21W09CCB01	208
				103N20W36CCB01	208
	434308093322001	Tocat	number	103N23W13CDA01	209
GOODHUE	441737002400501	I oce 1	number	110N15W31BBD01	209
				111N15W21CDA01	209
				113N15W27BAB01	210
HENNEPIN				115.15.15.15.15.15.15.15.15.15.15.15.15.	
		Local	number	027N24W30AAA01	210
Well	444801093202801	Local	number	027N24W30BDA01	211
				028N24W23ADD01	211
				029N24W06CCC01	212
				029N24W26BAB01	212
				029N24W27ABD01	212
				117N21W16CDB01	213 213
				117N24W13BBC04	213
				118N21W07DCB01.	215
				118N21W32CBB01	215
				118N21W32CBD01	215

					Page
HOUSTON					
Well	433953091251801	local	number	102N50W03DCC01	216
Well	433935091252001	Local	number	102N05W03DCC02	216
	443935091252901	Local	number	102N05W03DCC03	217
HUBBARD	466142004422201	T1		120022011544401	217
	403142094433201	rocar	number	139N32W16AAA01	217
ISANTI	452125002181101	Toool	h	035N24W14BCD01	218
				035N24W14CDC01	218
ITASCA	430030030173301	Local	HUMBL	0582411400001	210
	471450093322001	Local	number	055N25W17ACD01	218
JACKSON					
Well	434742095191501	Local	number	104N37W19DBD01	219
KANABEC					
		Local	number	039N24W11DDC01	219
LE SUEUF			_		
				111N26W14ADA01	220
				112N23W02BAB01	220
LINCOLN	443147093374301	rocar	number	112N23W06DDD01	220
	441705006084501	Tocal	number	110N44W33DCD01	221
MARTIN	741703030004301	LUCAL	Humber	11004400300001	221
Well1	434359094422201	Local	number	103N32W08CCD01	221
Well	434725094483001	Local	number	104N33W28BAB01	222
MC LEOD					
Well	444758094132101	Local	number	115N28W05ACC01	222
				116N29W35DDC01	222
	445721094031201	Local	number	117N27W10DAA01	223
MEEKER					
				119N30W19AAB01	223
		Local	number	121N31W26BDC01	224
MILLE LA		T 1	1	02000712540701	224
Well MORRISON		rocar	number	038N27W35ABC01	224
		Local	number	130N29W08DCC01	224
MOWER	100111001212301	Docar	Hamber	100,125,170,000,000,000,000,000,000,000,000,000	
	434010093010801	Local	number	102N18W05ACB01	225
				103N17W09DAA01	225
OLMSTED					
				105N13W04CAA01	225
				106N13W22CCB01	226
	435920092273801	Local	number	106N14W14ADB01	226
RAMSEY		T 1		COONTOOL AND A STATE OF THE STA	227
				029N22W14CAB01	227 227
				029N22W14CAB02	227
				029N22W14CRB03	228
				029N22W16ADB01	228
				029N22W31DDD01	228
				029N23W11CCC01	229
				029N23W25CCD01,	229
				029N23W35BAD01	230
				030N22W23CBB01	230
	450238093082501	Local	number	030N23W35BDC01	230
REDWOOD	//1202005000	.		100000000000	201
	441323093280701	rocar	number	109N38W30BBD01	231
RICE	441912093162901	Local	numher	110N20W19BDC01	231
Well	442543093102901	Local	number	111N20W11CDC01	232
				112N21W31CBB01	232
SCOTT					
	443732093460301	Local	number	113N24W06BCB01	232
Well	443352093423001	Local	number	113N24W28DAA01	233
				114N21W20BAA01	233
				114N22W35DCC01	234
				115N21W09CCC01	234
				115N23W28BDD01	235
				115N23W28BDD02	235 235
METT	77446/0333333303	POGST	Tedmin	IIJRZUMZODDUUJ	233

GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME--Continued

	Page
STEELE	
Well 435742093164001 Local number 106N20W30BAD01	236
Well 435611093163001 Local number 106N20W31DCC01	236
SWIFT	
Well 451913095370201 Local number 121N39W06BDB01	237
WABASHA	
Well 442708092155401 Local number 111N12W04BBD01	238
WADENA	
Well 462415095003001 Local number 134N34W19ADD01	238
WASHINGTON	-
Well 445125092464001 Local number 027N20W02BCC01	238
Well 445125092464002 Local number 027N20W02BCC02	239
Well 445125092464003 Local number 027N20W02BCC03	239
Well 444751092563101 Local number 027N21W28BCC01	239
Well 445536092462401 Local number 028N20W11CAA01	240
Well 450134092583101 Local number 029N21W06CAD01	240
Well 450027092552101 Local number 029N21W10CCC01	241
Well 450858092575001 Local number 031N21W28ABD01	241
Well 451355092532601 Local number 032N20W30BCD01	24:
WATONWAN	
Well 440037194372601 Local number 106N32W01DDB01	242
Well 440409094304901 Local number 107N31W14DAC01	242
Well 440133094312501 Local number 107N31W35CAC01	243
WINONA	
Well 435746092034202 Local number 106N10W19DDA02	243
WRIGHT	
Well 450403093544501 Local number 119N26W35DDA01	243
YELLOW MEDICINE	
Well 444219096165501 Local number 114N45W04DCD01	244
WILL THE EDUCATION AND EDUCATION AND ADDRESS AND ADDRE	
COUNTIES WITH QUALITY OF GROUND WATER RECORDS	
•	
BLUE EARTH.	246
DAKOTA	247
GOODHUE.	255
HOUSTON	255
JACKSON .	256
MURRAY	256
<u>OLMSTED</u> .	257
REDWOOD.	259
WABASHA.	259
WATONWAN	260
YELLOW MEDICINE	260
EMMAN: INDIVIDUAL PROPERTY OF THE PROPERTY OF	200
PRECIPITATION SITES, FOR WHICH CHEMICAL QUALITY RECORDS ARE PUBLISHED	
Precipitation Station at Camp Ripley	261

WATER RESOURCES DATA - MINNESOTA, 1991

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Minnesota have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Letters after station name designate type of the data collected: (d) discharge, (e) elevation (stage only)]

Station name	Station number	Drainage area (mi ²)	Period of record
UPPER MISSISSIPPI RIVER BASIN			
Mississippi River near Deer River, MN (d)	05210000	a3,190	1945-50
Prairie River near Taconite, MN (d)	05212700	a360	1967-83
Prairie River near Grand Rapids, MN (d)	05213000*	485	1909†, 1925-49
O'Brien Creek near Pengilly, MN (d)	05216800	-	1963-68
Initial tailings basin outflow near Keewatin, MN (d)	05216820	2.5	1982-85
Swan River near Calumet, MN (d)	05216850	114	1964-90
Swan River near Warba, MN (d)	05217000	254	1954-69
Swan River near Swan River, MN (d)	05217500	a290	1929
Mississippi River above Sandy River near Libby (above Sandy River), MN (d)	05218000	4,560	1895-1915 1925-29
Mississippi River below Sandy River near Libby, MN (d)	05220500	a5,060	1930-90
Willow River near Palisade, MN (d)	05221000	442	1929
Ripple (Mud) River near Wealthwood, MN (d)	05226200	-	1937-39
Pelican Brook (Long Lake) near Pequot Lakes, MN (d)	05232000	-	1938-42, 1943-47
Rabbit River near Crosby, MN (d)	05241500	8.38	1945-63
Little Sand Lake outlet (Sand Lake outlet) near Dorset, MN (d)	05242700	a74	1930-41
Crow Wing River at Nimrod, MN (d)	05244000*	a1,010	1910-14, 1930-81
Crow Wing River at Motley, MN (d)	05244500	a2,140	1909† 1913-17, 1930-31
Diversion from Long Prairie River near Osakis, MN (d)	05244980	-	1939-47
Long Prairie River near Osakis, MN (d)	05245000	-	1949-54
Long Prairie River near Motley, MN (d)	05245500	973	1909-17, 1930-31
Crow Wing River at Pillager, MN (d)	05246000	a3,230	1903†, 1909-13, 1925-50
Mississippi River near Fort Ripley, MN (d)	05261000*	a11,010	1906, 1909-10, 1929
Nokasippi River near Fort Ripley, MN (d)	05261500	210	1929
Platte (Platt) River at Royalton, MN (d)	05268000*	338	1929-36
Mississippi River near Sauk Rapids, MN (d)	05269000	a12,400	1903-06
Mississippi River at Sartell, MN (d)	05270000	a12,450	1929, 1943-47†

[&]quot;See footnotes at end of table."

Station name	Station number	Drainage area (mi ²)	Period of record
UPPER MISSISSIPPI RIVER BASIN-	-Continued		
Clearwater River at Clearwater, MN (d)	05273500	-	1937, 1940-42
Elk River above St. Francis River near Big Lake, MN (d)	05274500	384	1929
St. Francis River at Santiago, MN (d)	05274700	-	1965-70 1980-81
St. Francis River above Zimmerman, MN (d)	05274750	-	1980-84
St. Francis River near Big Lake, MN (d)	05274900	-	1965-70
Mississippi River at Elk River, MN (d)	05275500	a14,500	1915-56
North Fork Crow River near Regal, MN (d)	05276000	215	1943-54
Middle Fork Crow River at New London, MN (d)	05277000	-	1939-42 1943-47
Middle Fork Crow River (Calhoun Lake Diversion) near Spicer, MN (d)	05277500	-	1939, 1940-46
Middle Fork Crow River near Spicer, MN (d)	05278000	179	1949-87
North Fork Crow River near Rockford, MN (d)	05278400	-	1909-10
South Fork Crow River at Cosmos, MN (d)	05278500	221	1945-64
Buffalo Creek near Glencoe, MN (d)	05278930	374	1972-80
South Fork Crow River near Mayer, MN (d)	05279000*	a1,170	1934-79
South Fork Crow River near Rockford, MN (d)	05279500	a1,250	1909-12
dississippi River at Anoka, MN (d)	05283500	a17,100	1897, 1905-13
Rum River at Onamia, MN (d)	05284500	414	1910-12
Rum River at Spencer Brook MN (d)	05284750	-	1960-64
Rum River at Cambridge, MN (d)	05285000	a1,160	1909-14
Rum River at St. Francis, MN (d)	05285500	-	1903
Rum River near Anoka, MN (d)	05286500	1,430	1905-06 1909
Minnetonka Lake (head of Minnehaha Creek) near Wayzata (at Excelsior), MN (d)	05289000	-	1938-64
Minnehaha Creek at Minnetonka Mills, MN (d)	05289500	130	1953-64
MINNESOTA RIVER BASIN		•	
Minnesota River near Odessa, MN (d)	05292500	a1,340	1909-12 1944-63
Pomme de Terre River near Morris, MN (d)	05293500	-	1937-39 1940-47
Canby Creek at Canby, MN (d)	05299500	-	1938-39 1940-46
Ten Mile Creek near Boyd, MN (d)	05300500	82.8	1949-51
Little Chippewa River near Lowry, MN (d)	05302000	a54	1941
Little Chippewa River near Starbuck, MN (d)	05302500*	111	1938-39
Chippewa River at diversion dam near Hancock, MN (d)	05303000	-	1930-39 1940-46
Chippewa River at Benson, MN (d)	05303500	a1,270	1949-51
Shakopee Creek near Benson, MN (d)	05304000	352	1949-54

[&]quot;See footnotes at end of table."

Station name	Station number	Drainage area (mi ²)	Period of record
MINNESOTA RIVER BASINContinue	od.		
Chippewa River near Watson, MN (d)	05305000	a2,050	1910-17, 1931-36
South Branch Yellow Medicine River at Minneota, MN (d)	05311400	111	1960-81 1983-87
Yellow Medicine River near Cottonwood, MN (d)	05311500	465	1945-46
Spring Creek near Clarkfield, MN (d)	05312000	a89	1945-46
Spring Creek near Hazel Run, MN (d)	05312500	101	1945-48
Yellow Medicine River near Hanley Falls, MN (d)	05313000	606	1945-47
Hawk Creek at outlet of Eagle Lake near Willmar, MN (d)	05313521	-	1972-73
Eagle Lake tributary No. 7 near Willmar, MN (d)	05313560	-	1972-73
Eagle Lake tributary No. 8 near Willmar, MN (d)	05313570	-	1972-73
Chetomba Creek near Maynard, MN (d)	05314000	a200	1949-51
Hawk Creek near Maynard, MN (d)	05314500*	474	1949-54
Prairie Ravine near Marshall, MN (d)	05315200*	5.63	1959-64
Redwood River near Green Valley, MN (d)	05315500	436	1945-57
Redwood River near Seaforth, MN (d)	05316000	573	1945-46
Minnesota River at New Ulm, MN (d)	05316770	9,536	1968-76
Dry Creek near Jeffers, MN (d)	05316900	3.13	1982-85
Minnesota River at Judson, MN (d)	05317500	a11,200	1938-50
East Branch (East Fork) Blue Earth River near Bricelyn, MN (d)	05318000*	132	1951-70
South Fork Watonwan River at diversion dam near St. James, MN (d)	05319000	-	1939, 1940-46
Blue Earth River at Mankato, MN (d)	05321000	a3,550	1938-39 1940-42
Sand Creek at diversion dam near Jordan, MN (d)	05330400	-	1938-39 1940-46
Purgatory Creek at Eden Prairie, MN (d)	05330800	-	1975-80
Nine Mile Creek at Bloomington, MN (d)	05330900	-	1963-73
ST. CROIX RIVER BASIN			•
Glaisby Brook near Kettle River, MN (d)	05336200*	24.2	1959-70
Kettle River near Sandstone, MN (d)	05336500	825	1908-16
Grindstone River at Hinckley, MN (d)	05337000	-	1940-47
Snake River at Mora, MN (d)	05337500	422	1909-13
Snake River at Sanatorium Bridge near Pine City, MN (d)	05338000	-	1937-38
St. Croix River near Rush City, MN (d)	05339500	a5,120	1923-61
Sunrise River near Stacy, MN (d)	05340000	167	1949-65
Sunrise River near Lindstrom, MN (d)	05340050	231	1965-85

[&]quot;See footnotes at end of table."

Station name	Station number	Drainage area (mi ²)	Period of record
LOWER MISSISSIPPI RIVER BA	ASIN		
Vermillion River at Empire (Empire City), MN (d)	05345500	124	1942-44
Vermillion River at Hastings, MN (d)	05346000	195	1942-47 1990
Mississippi River at Wabasha, MN (d)	05371500	a56,600	1934
South Fork Zumbro River on Belt Line at Rochester, MN (d)	05372800*	155	1981
Bear Creek at Rochester, MN (d)	05372930*	80.0	1981
Silver Creek at Rochester, MN (d)	05372950*	17.3	1981
Cascade Creek at Rochester, MN (d)	05372990*	35.8	1981
South Fork Zumbro River near Rochester, MN (d)	05373000	304	1952-8
Cumbro River (South Branch) near Zumbro Falls, MN (d)	05373500	821	1911-1
Zumbro River at Zumbro Falls, MN (d)	05374000	-	1909-1 1929-8
Zumbro River at Theilman, MN (d)	05374500	a1,320	1938-5
Cumbro River at Kellogg, MN (d)	05374900	1,400	1975-9
South Fork Whitewater River near Altura, MN (d)	05376500*	76.8	1939-7
Beaver Creek at Beaver, MN (d)	05377000	15.4	1939-4
Whitewater River at Beaver, MN (d)	05377500	288	1936-3 1939-5
Stockton Valley Creek at Stockton, MN (d)	05378230	-	1982-8
Straight Valley Creek near Rollingstone, MN (d)	05378300	5.16	1970-8
Gilmore Creek at Winona, MN (d)	05379000	8.95	1939-6
Mississippi River at Lamoile, MN (d)	05380500	a60,000	1930-3
Mississippi River at LaCrosse, WI (d)	05383500	-	1929-5
North Branch Root River tributary near Stewartville, MN (d)	05383600	0.73	1959-6
Rush Creek near Rushford, MN (d)	05384500*	129	1942-7
Root River near Lanesboro, MN (d)	05384000	615	1910 1911-1 1940-8 1987-9
South Fork Root River near Houston, MN (d)	ъ05385500	275	1953-8
Noot River below South Fork near Houston, MN (d)	05386000	a1,560	1938-6
Turtle Creek near Austin, MN (d)	05456500	144	1947-5
Heron Lake outlet near Heron Lake, MN (d)	05475000	-	1930-4
BIG SIOUX RIVER BASIN			
Rock River at Luverne, MN (d)	06483000*	440	1911-1
Little Sioux River near Lakefield, MN (d)	06603000	17.1	1948-6
Jackson County ditch No. 11 near Lakefield, MN (d)	06603500	7.69	1948-6

Presently operated as a high-flow partial-record station.
 Stage records only.
 Approximately.
 Discharge measurements made to maintain a current rating.

WATER RESOURCES DATA FOR MINNESOTA, 1990

INTRODUCTION

The Water Resources Division of the U.S Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Minnesota each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Minnesota."

Water resources data for the 1991 water year for Minnesota consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume contains discharge records for 60 gaging stations; stage and contents for 9 lakes and reservoirs; water quality for 18 stream stations, 1 lake station, 22 partial-record sites, 1 precipitation station, 108 wells; and water levels for 119 observation wells. Also included are 59 high-flow partial-record stations. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous measurements or low-flow investigations. These data, together with the data in Volume 1, represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota.

This series of annual reports for Minnesota began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for Minnesota were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 4, 5 and 6A." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply papers can be consulted in the libraries of the principal cities of the United States and may be purchased from Distribution Branch, Text Products Section, U.S. Geological Survey, 604 Pickett Street, Alexandria, VA 22304.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and volume number. For example, this volume is identified as the "U.S. Geological Survey Water-Data Report MN-91-2. For archiving and general distribution, the reports for 1971-1974 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (612) 783 3101.

COOPERATION

The U.S. Geological Survey and organizations of the State of Minnesota have had cooperative agreements for the systematic collection of streamflow records since 1909, for ground-water levels since 1948, and for water-quality records since 1952. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Minnesota Department of Natural Resources, Division of Waters, Kenneth Lokkesmoe, director.

Minnesota Department of Transportation, Leonard W. Levine, commissioner.

Metropolitan Waste Control Commission of the Twin Cities Area, Louis R. Clark, chairperson.

Beltrami Soil and Water Conservation District, Floyd W. Jorgensen, chairperson.

Elm Creek Conservation Commission, Fred G. Moore, chairperson.

Leech Lake Reservation Business Committee, Daniel Brown, chairperson.

Lower Red River Watershed Management Board, Donald Ogaard, chairman.

Whitewater Joint Powers Board, Eugene Kalmes, chairman.

Assistance in the form of funds or services was given by the U.S. Army Corps of Engineers, in collecting records for 46 gaging stations and 12 water-quality stations published in this report of 2 volumes. Thirteen gaging stations in the Hudson Bay and St. Lawrence River basins were maintained by funds appropriated to the United States Department of State. Eight of these, on water adjacent to the international boundary, are maintained by the United States (or Canada) under agreement with Canada (or the United States), and the records are obtained and compiled in a manner equally acceptable in both countries. These stations are designated herein as "International gaging stations."

SUMMARY OF HYDROLOGIC CONDITIONS

PRECIPITATION

Normal annual precipitation in Minnesota ranges from about 19 in. (inches) in the northwest to more than 32 in. in the southeast. Precipitation during water year 1991 ranged from less than 20 in. in the northwest to 44 in. in several areas in southern, central, and east-central Minnesota. Precipitation ranged from more than 3 in. below normal (based on record period 1961-90) in small areas of northern, southwestern, and southeastern Minnesota to more than 12 in. above normal in other areas of southern, central, and east-central Minnesota; precipitation in one small area in central

Minnesota was more than 16 in. above normal during the water year (fig. 1).

The water year began with an 8- to 12-in. precipitation deficit in parts of northern Minnesota, and a 12- to 16-in. precipitation excess in parts of east-central and southeastern Minnesota. The following is a summary of precipitation during the 1991 water year:

October - above normal statewide except in the northwest and south where it was below normal.

November - below normal statewide.

December - near normal statewide except in parts of the south where it was considerably above normal.

January - below normal statewide.

February - below normal statewide except in the east-central, west-central, north-central, and northwest where it was above normal.

March - above normal statewide except in the northwest and northeast where it was below normal.

April - above normal statewide except in the northeast where it was below normal.

May - above normal statewide except in west-central region where it was below normal.

June - below normal statewide except in the northwest, west-central, and southwest where it was above normal.

July - above normal statewide except in the southwest where it was below normal.

August - below normal statewide except in the south-central and southeast where it was above normal.

September - above normal statewide.

Two notable rainfalls occurred during the summer of 1991. The first was on Sunday, July 21, when approximately 6 in. of rain fell in a one-hour period in the Garvin Brook basin in southeastern Minnesota. This is about twice the 100-year one-hour rainfall for that area. The entire town of Stockton, which lies in the Garvin Brook valley, was flooded to depths as much as 5 feet. Four miles downstream from Stockton, the gage shelter for the gaging station, Garvin Brook near Minnesota City (05378235), was washed away. A survey showed that Garvin Brook had risen 17 feet at the gage site.

The second event was on September 7, when more than 6 in. of rain fell on Saturday evening between 2 pm and 10 pm from south of Breckenridge in west-central Minnesota near the North Dakota border to Paynesville in central Minnesota, and from Hector to Glencoe in central Minnesota. A Soil and Water Conservation District official reported 11 in. of rain just west of Glencoe. An additional 2 or more inches of rain fell over much of Minnesota on Sunday night, September 8. As a result, flood stages or near flood stages were reached in several tributaries to the Minnesota and Mississippi Rivers during September.

STREAMFLOW

Average annual runoff in Minnesota ranges from 1 in. in the west to 14 in. in the northeast. Annual runoff in water year 1991 ranged from 0.14 in. (6 percent of average) in a small part of northwestern Minnesota to 16.90 in. (129 percent of average) in east-central Minnesota (table 1, vol. 1). In contrast to the previous year, when runoff in the western one-third of the State was considerably less than one-half the long-term average, runoff in 1991 was less than one-half the long-term average only in the northwest. Runoff in west-central and southwestern Minnesota during 1991 generally exceeded the long-term average and for some streams was almost twice the long-term average. In the remaining eastern two-thirds of

the State, runoff ranged from more than one-half the long-term average in the north to greater than twice the long-term average in some areas of the south (table 1, vol. 2).

In 1991, runoff to the Upper Mississippi and Missouri River Basins (Volume 2) ranged from below average in the north to considerably above average in parts of the south. Runoff ranged from as low as 47 percent of average in the Mississippi River at Grand Rapids (05211000) to as high as 222 percent of average in the Minnesota River at Mankato (05325000) in south-central Minnesota.

In east-central Minnesota, runoff in the Mississippi River at Aitkin (05227500) was 4.71 in. - 74 percent of the 46-year average (1946-91) of 6.40 in. and almost the same as in the previous year when runoff was 4.72 in. and 73 percent of average.

Runoff in the Crow River at Rockford (05280000), in the southern part of central Minnesota, was 8.54 in. or 216 percent of the station's 66-year average (1910-17, 1931, 1935-91) annual runoff of 3.96 in. reflecting the 8 to 20 in. of above normal precipitation in this basin during the 1991 water year (normal annual precipitation is 28 in.). In contrast, runoff in the previous year was 3.34 in. (86 percent of average).

In west-central Minnesota runoff in the Chippewa River near Milan (05304500) was 2.88 in., 127 percent of the station's 54-year average (1938-91) of 2.27 in. and more than twice the runoff that occurred in 1990 - 1.03 in. (46 percent of average).

In southwestern Minnesota, runoff in the Des Moines River at Jackson (05476000) was 4.84 in., 136 percent of the station's 56-year average (1936-91) of 3.56 in. This is 7 1/2 times the runoff that occurred in the previous year - 0.64 in. (18 percent of average), and is the result of 8 to 16 in. of above normal precipitation in this banduring 1991. Figure 2 shows the 1991 annual- and monthly-mean discharges for the above stations compared to the median of their mean discharge for a 30-year base period.

A new record peak discharge was recorded at Garvin Brook near Minnesota City (05378235) in southeastern Minnesota on July 21, 1991. The entire town of Stockton was inundated as a result of the intense rainfall. The stage rose to 17.79 feet at the gage on Garvin Brook, and a discharge of 10,800 ft³/s was determined by indirect methods. The previous peak of record (1983, 1985-91), 1,580 ft³/s, occurred on September 21, 1986 at a gage height of 6.63 ft. Also, record- and near-record-high monthly volumes occurred in the Minnesota and Mississippi Rivers as well as in several of their larger tributaries during late spring and summer of 1991.

The combined storage in the six Mississippi River Headwater Reservoirs (Winnibigoshish, Leech, Pokegama, Pine, Sandy, and Gull), in northern and central Minnesota, was 1,555,308 acre-feet at the close of the 1991 water year - an increase of 102,640 acre-feet from the close of last year.

WATER QUALITY

Boxplots for three U.S. Geological Survey National Stream-Quality Accounting Network (NASQAN) stations and one benchmark station are used to depict variability in concentrations of dissolved solids and nitrate as nitrogen in the Upper Mississippi River basin (figs. 3 and 4); there are no water-quality stations in the Missouri River basin in Minnesota.

Boxplots are a useful graphical technique because they display the central tendency, variation, and skewness of a data set, as well as the presence or absence of extreme values. A boxplot consists of a centerline (the median) dividing a rectangle defined by the 75th and 25th percentiles. Whiskers are drawn from the ends of the box (75th and 25th percentiles) to the most extreme observation within 1.5 times the interquartile range (the distance from the 25th to the 75th percentile values) beyond the ends of the box. Values more than 1.5 interquartile ranges from the box ends may indicate extreme hydrologic and chemical conditions or sampling and analytical errors. Observations from 1.5 to 3 interquartile ranges from the box in either direction are plotted individually with an asterisk.

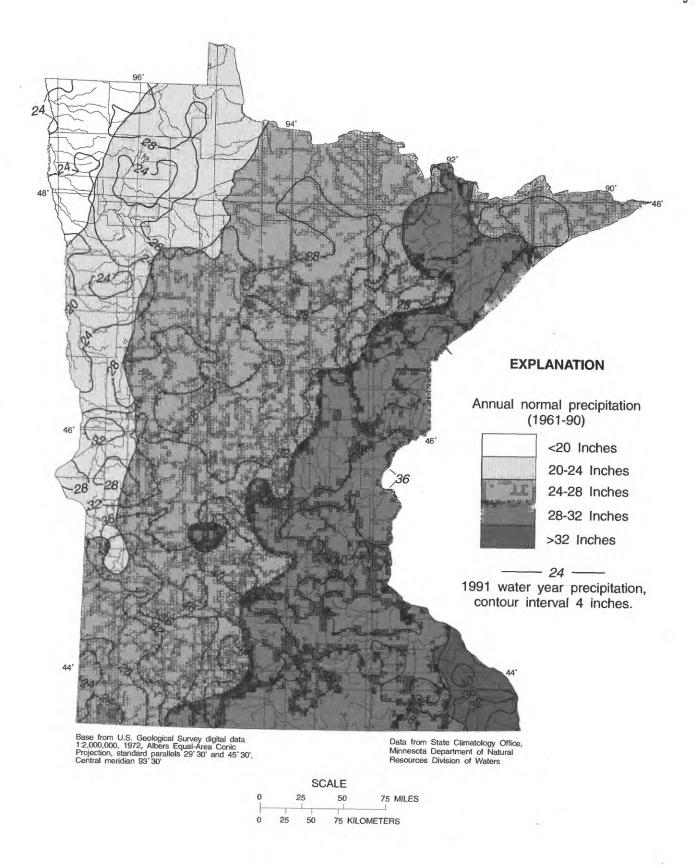


Figure 1.--Precipitation, in inches, during 1991 water year compared to normal annual precipitation in Minnesota.

Table 1.--Runoff at streamflow stations in 1991 compared with long-term average for river basins in Minnesota [Average runoff for station is based on period of record. Maximum and minimum runoff and year of occurrence are shown. mi², square miles.]

4

			Runoff (inches)	nches)	Maxim	Maximum runoff	Minim	Minimum runoff	
Station no.	Station name	Drainage area (mi2)	1991 Water year	Average	Inches	Water year	Inches	Water year	Years of record
05201500	Mississippi River at Winnibigoshish Dam near Deer River	1,442	2.65	4.88	11.61	1898*	0.85	1937*	107
05206500	Leech Lake River at Federal Dam	1,163	2.64	4.32	9.52	1899*	07.	1936*	107
05211000	Mississippi River at Grand Rapids	3,370	2.59	4.78	9.78	1906	1.	1934	108
05219000	Sandy River at Sandy Lake Dam at Libby	421	15.22	7.26	17.43	1986	-45	1931*	8
05227500	Mississippi River at Aitkin	6,140	4.71	07.9	11.03	1966	1.76	1977	97
05231000	Pine River at Cross Lake Dam at Cross Lake	295	4.28	5.32	13.48	1905*	84.	1931*	105
05245100	Long Prairie River at Long Prairie	432	3.93	4.81	11.51	1972	٤.	17761	50
05247000	Gull River at Gull Lake Dam near Brainerd	287	3.72	5.16	10.79	1972	.76	1931*	80
05267000	Mississippi River near Royalton	11,600	4.32	5.36	10.44	1986	1.42	1934	29
05270500	Sauk River near St. Cloud	925	5.95	4.10	10.73	1972	0.73	1931	52
05275000	Elk River near Big Lake	615	9.23	6.12	14.77	1986	1.94	1935	8
05280000	Crow River at Rockford	2,520	8.54	3.96	14.84	1986	.35	1931	899
05286000	Rum River near St. Francis	1,360	8.12	6.25	15.10	1986	99.	1934	\$65
05287890	Elm Creek near Champlin	6.48	9.58	5.18	12.01	1986	Ε.	1988	13
05288500	Mississippi River near Anoka	19,100	6.16	5.62	12.62	1986	1.14	1934	9
05291000	Whetstone River near Big Stone City	389	2.97	1.74	6.32	1986	• 00	1934	8
05292000	Minnesota River at Ortonville	1,160	1.67	1.24	4.26	1986	.03	1977, 1981	53
05293000	Yellow Bank River near Odessa	398	2.67	1.9	7.68	1986	.14	1981	52
02594000	Pomme de Terre River at Appleton	905	1.26	1.67	5.45	1986	.32	1977	26
02300000	Lac qui Parle River near Lac qui Parle	983	3.44	1.82	6.45	1986	00.	1934	§09
05301000	Minnesota River near Lac qui Parle	050'5	2.96	2.27	8.41	1986	.25	1959	67
05304500	Chippewa River near Milan	1,870	2.88	2.27	67.6	1986	.33	1940	24

Calendar year Noncontinuous period

5

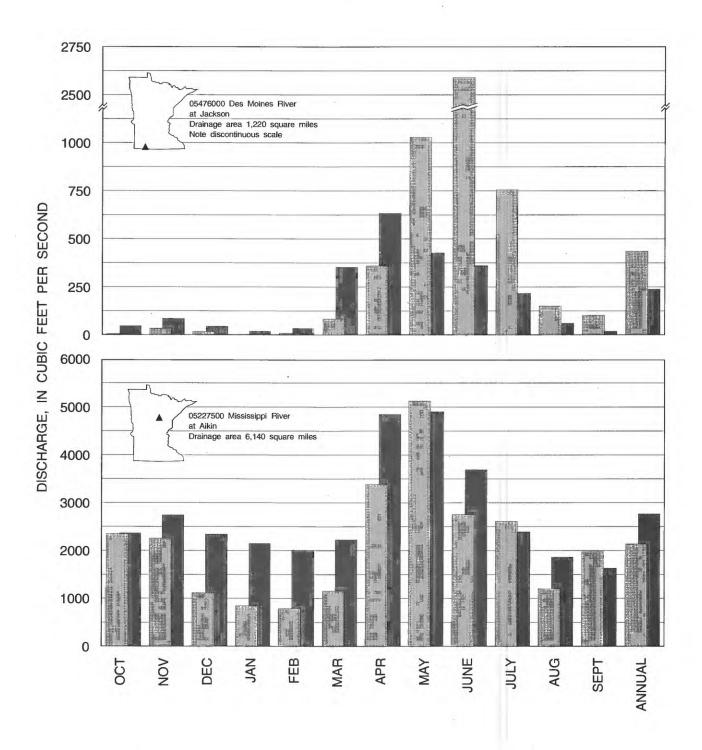
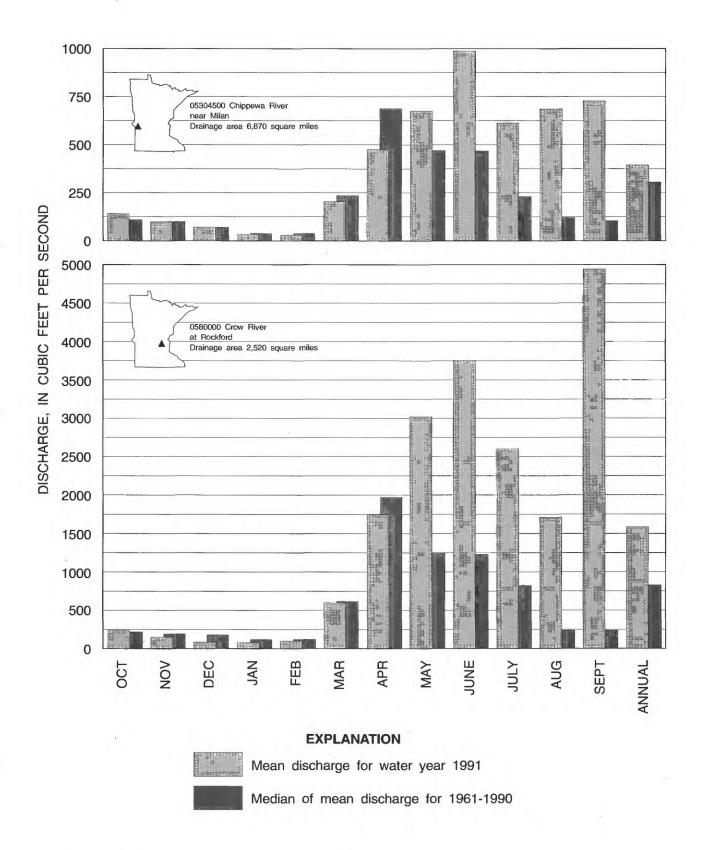



Figure 2.--Comparison of mean discharge for the 1991 water year with median

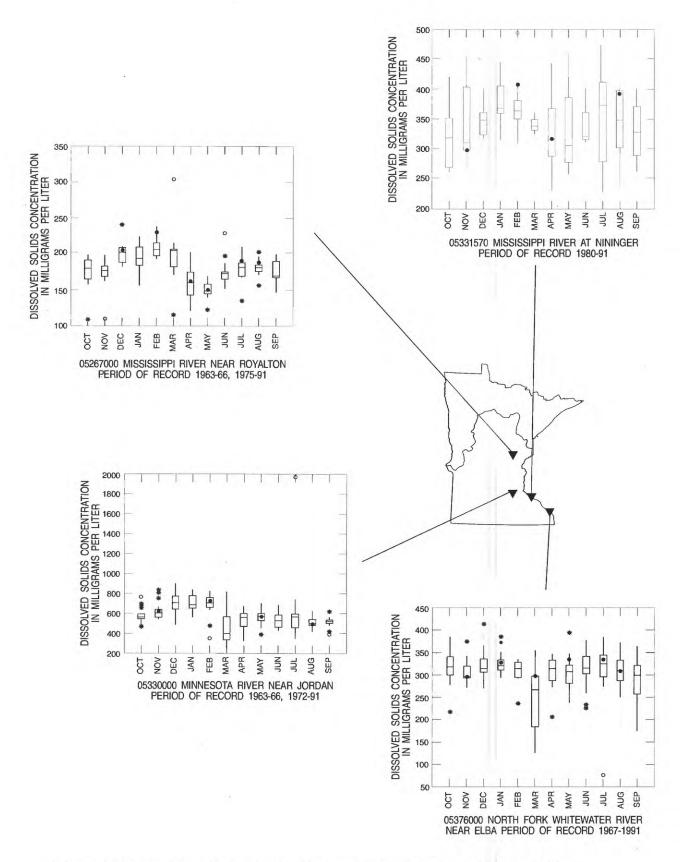


Figure 3--Comparison of dissolved-solids concentrations in water year 1991 with median for period of record at representative gaging stations.

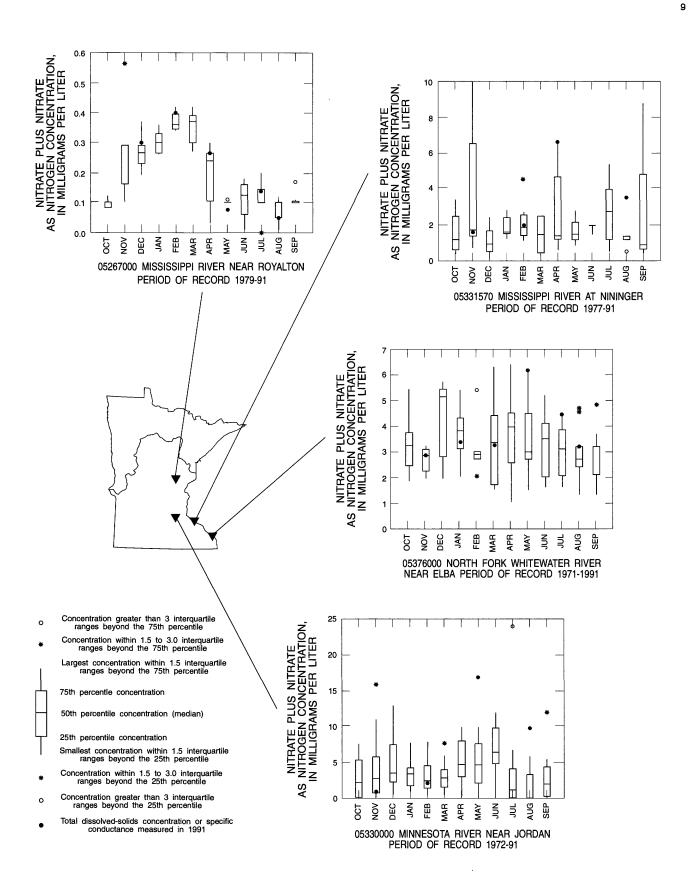


Figure 4--Comparison of nitrate plus nitrate concentrations in water year 1991 with median for period of record at representative gaging stations.

Observations greater than three interquartile ranges from the ends of the box are plotted with an open circle. Water year 1991 values are plotted with a closed circle to show where these data lie with respect to the historic distribution of data.

Dissolved-solids concentrations determined in 1991 generally were near the monthly medians in the Mississippi River near Royalton, the Minnesota River near Jordan, and the North Fork Whitewater River near Elba. Dissolved-solids concentrations in the Mississippi River at Nininger were near the monthly medians in all quarterly samples except the February sample, which was higher than the median.

Nitrate concentrations reported as nitrogen (analyzed for nitrate plus nitrite, with nitrite concentration assumed to be negligible) were near the median in samples collected in the Mississippi River near Royalton, but were higher in some samples collected at the other three stations. The samples with higher concentrations were collected in the spring and summer. A sample collected in August in the Minnesota River near Jordan had a nitrate concentration of 17 milligrams per liter.

One hundred twenty three water samples were collected from 88 wells. Nitrate concentrations were above the primary drinking-water standard of 10 mg/L (Minnesota Pollution Control Agency, 1988) in 13 samples. Fourteen samples were above the iron standard of 300 ug/L, and 7 samples were above the manganese standard of 50 ug/L.

GROUND-WATER LEVELS

Data for 18 wells completed in surficial sand aquifers, 17 in buried sand and gravel aquifers, 6 in the Upper Carbonate Aquifer, 6 in the St. Peter Aquifer, 35 in the Prairie du Chien-Jordan Aquifer, 12 in the Franconia-Ironton-Galesville Aquifer, 14 in the Mount Simon-Hinckley-Fond du Lac Aquifer, 4 in the Cretaceous Aquifer, and 2 in the Sioux Quartzite Aquifer are published in this volume.

Surficial Sand Aquifers

Water levels were higher in 13 of 18 shallow surficial-sand wells located in central and southern Minnesota at the end of the 1991 water year as compared to the previous year; water levels in 5 were lower. Water levels rose 4 feet in a well (440037094372601) in south-central Minnesota and were above the monthly average from June through September; this was the first time a monthly average had been exceeded in this well since July 1986 (see hydrograph page 242). Rainfall near this well was in excess of 10 inches above average during April-June. In well (46044094212501) in central Minnesota water levels rose 1.1 feet, but levels were below the monthly average during the entire year except for July (fig. 5a). During April and May, 4 inches of above average precipitation fell near this well. In the southern part of west-central Minnesota water levels in well (450631095562201) were almost at record highs the entire year in an area where precipitation was 11 inches above average. Water levels were below average during the entire water year in well (473023094570901) in north-central Minnesota with new monthly low levels from October to July, and an all-time low level in March for a 21-year period of record (see hydrograph page 196). In another well with 21 years of record (465142094433201) in the same part of the State an all-time record low level also occurred in March (fig. 5a and hydrograph page 217). The same well had new monthly low levels from October to May, near-record low levels in June, and new monthly low levels from July to September. (462415095003001) in the northern part of central Minnesota, water levels were below average all year. Less than average precipitation is the cause of the lower water levels in this part of the State.

Buried Sand and Gravel Aquifers

Water levels in 15 of 17 buried sand and gravel wells were higher at the end of the water year than they were at the end of the previous year. The two wells with lower water levels were in local areas of large groundwater withdrawals. One of these wells (444815093194901) with 12 years of record had new all-time monthly low levels for the entire water year (see hydrograph page 210). Ten

feet of water level decline (about one foot per year) has been measured in this well. This well, located in Hennepin County, is in an area where pumping from the Prairie du Chien-Jordan aquifer has contributed to a decline in water levels in the overlying buried-drift aquifer. The other well (443801092571301) that had lower water levels is located in Dakota County and is in an area of large withdrawals for irrigation (see hydrograph page 205). This well had a new monthly low level in July, and was below average during August and September. As mentioned previously, most wells completed in the buried-drift aquifer had noticeable water level rises over the previous water year. Water level rises ranged from less than 1 foot to over 6 feet and averaged about 2 feet. For example, monthly water levels were about 3 feet above average from April to September in well 455236093172301 (fig. 5b and hydrograph page 219). Precipitation during this same period was in excess of 8 inches above average.

Upper Carbonate Aquifer

Two of 6 wells in the Upper Carbonate Aquifer, well (435742093164001) in south-central Minnesota and well (445538092232601) in southeastern Minnesota, about 45 miles apart, had above average levels from October through April, all-time high levels in May, and monthly high levels from June through September. Rainfall amounts during late spring and summer were 5 inches above average. Another well (440448092485501) in the southeast had record monthly high levels only in June, August, and September; the water level in this well was 4 feet higher at the end of September as compared to September 1990. Precipitation was at least 5 inches above average in the area of this well. Three wells (433846093220601, see hydrograph page 208, 434032093111801, and 434308093322001) in south-central Minnesota had record monthly high levels in November. These highs probably reflect the continuation of rising water levels from the wet fourth quarter of the previous water year.

St. Peter Aquifer

Two (450026093084201 and 450134092583101) of six wells completed in the St. Peter aquifer in the Twin Cities Metropolitan Area had record monthly low levels from October through July and both were below average during August and September (see hydrograph for former well page 229). Both wells have 20 years of record. Another well (445857093223101) had record monthly low levels from October through January, and levels were below average the rest of the year (see hydrograph page 215). Less than average precipitation in past years and increased demand for ground water have affected water levels in the St. Peter aquifer (fig. 5d). A well (434558093540001) in south-central Minnesota had an average monthly water-level rise of 0.3 foot during the water year. In this part of the State, precipitation was 6 inches above the yearly average and pumping of ground water for agricultural use from this well was reduced.

Prairie du Chien-Jordan Aquifer

Of 35 wells completed in the Prairie du Chien-Jordan aquifer, water levels were higher in 25 and lower in 10 wells compared to water levels in the previous water year. Water levels in 10 wells in the Minneapolis-St. Paul pumping center were, on the average, 3.4 feet higher than last year. This was in marked contrast to 7 wells in areas where irrigation is practiced where water levels were, on the average, about 2 feet lower than last year. In areas of large withdrawals, such as downtown St. Paul and Minneapolis, the monthly fluctuations in measured water levels was 51 feet in St. Paul and 54 feet in Minneapolis. In September, water levels rose 37 feet in St. Paul and 44 feet in Minneapolis. Water levels at the end of September were 11 feet above average in St. Paul and 14 feet above average in Minneapolis. A recorder well (445700093051001) in downtown St. Paul with 20 years of record had record-high levels in February, March, April, and May (fig. 5c). These record-high levels all occurred on the first Monday of each month between the hours of 2 a.m. and 6 a.m. It was determined that during the first weekend of each month, most if not all, nearby wells were not pumping, allowing the water level in this well to rise to its maximum natural level. A recorder well (43393509125180) in southeastern Minnesota had new monthly low levels for the entire year. Precipitation in this part of

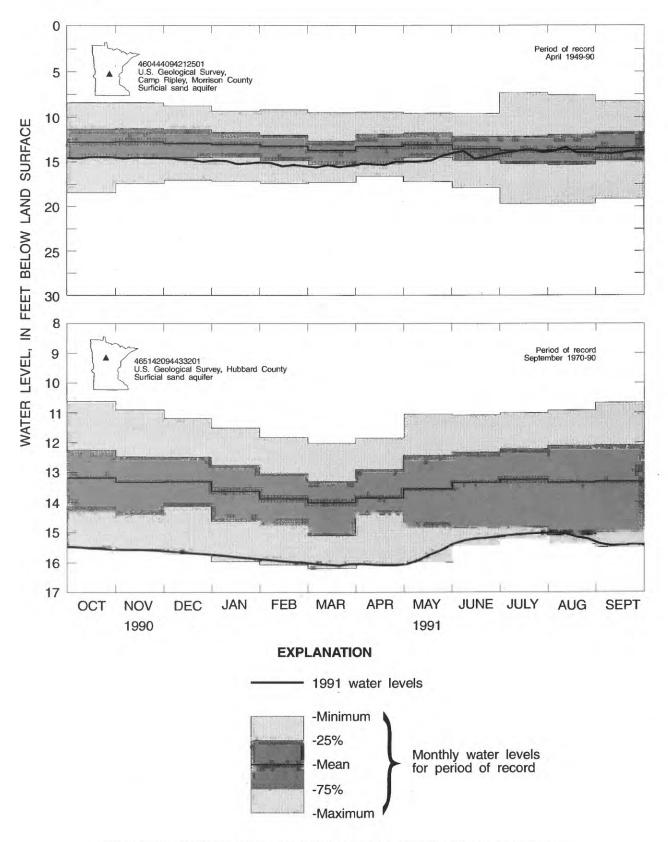


Figure 5a.--Relation of water levels during 1991 to long-term levels in two representative wells in surficial sand aquifers.

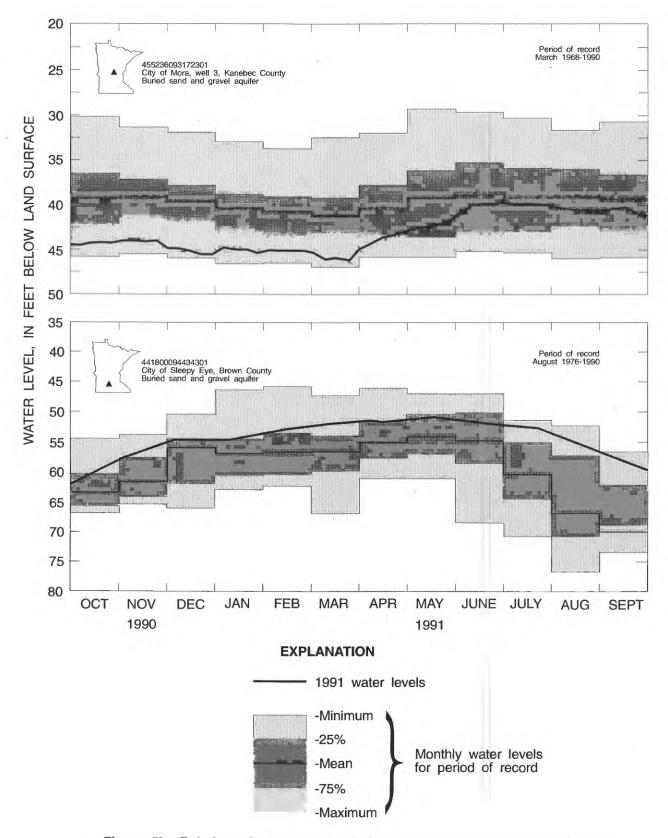


Figure 5b.--Relation of water levels during 1991 to long-term levels in two representative wells in buried sand and gravel aquifers.

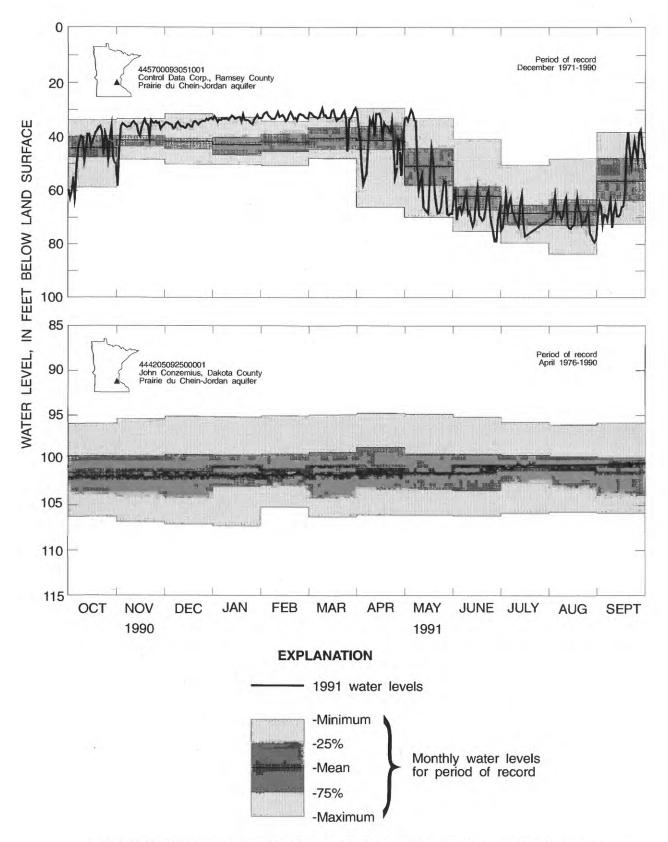


Figure 5c.--Relation of water levels during 1991 to long-term levels in two representative bedrock wells in the Prairie du Chein-Jordan aquifer.

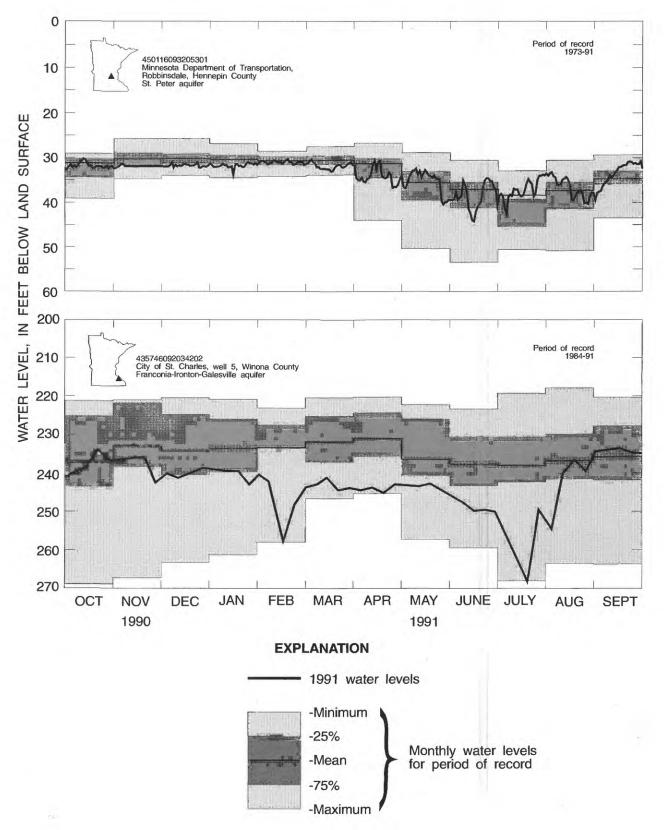


Figure 5d.--Relation of water levels during 1991 to long-term levels in two representative bedrock wells in the St. Peter and Franconia-Ironton-Galesville aquifer.

the State has not been adequate to reverse this downward trend in water level initiated by the drought in previous years. For example, from June to September, rainfall near this well was 4.6 inches below average. Another well (441134093505301), in a rural setting in south-central Minnesota had record monthly lows from October through June (see hydrograph page 198). These new lows are probably due to natural causes, such as less than average precipitation in previous years. Water levels rose in this well from July through September when precipitation was above average. A well (445044093102401) with 14 years of record, located in an urban setting, had record-low levels in November and July and water levels were below average during the entire year except for September. This well is less than 1 mile from several municipal supply wells.

Franconia-Ironton-Galesville Aquifer

Of 12 wells completed in the Franconia-Ironton-Galesville aquifer, 11 had higher water levels and 1 had lower water levels compared to the previous water year. The well with lower water levels is in a local pumping center; water levels were 3 feet lower than during comparable periods last year. A recorder well (440050094102801) in south-central Minnesota, had water levels below average from October through April and average from May through September. Rainfall was 8 inches above average from May to September in the area of this well. Two wells had record monthly low levels. One well (444427093353902), in central Minnesota, had a new low level in July; it is located near a sandstone quarry where pumping occurs. The other well (445536092462401), with 13 years of record, is located in east-central Minnesota. It had a new low level in March (see hydrograph page 240). In May the water level rose 4 feet as a result of 5 inches of above average rainfall during the month. Recharge to this well is very rapid as sand overlies the aquifer.

Mount Simon-Hinckley-Fond du Lac Aquifer

Of 14 wells completed in the Mount Simon-Hinckley-Fond du Lac aquifer, one well (444633093212901), with 20 years of record, had an all-time low water level in September. Another well (444427093353903), with 7 years of record, had a new monthly low level in September. Both wells are located in Scott county. Reversal of water level declines from 1989 within the Twin Cities Metropolitan Area has been observed in three wells. At the end of September 1991, water levels in two wells located in St. Paul and Minneapolis were 12 and 10 feet higher, respectively, than levels in September 1990 (fig. 5e). Water levels were, however, 13 feet below average in St. Paul and 25 feet below average in Minneapolis at the end of the water year. The third well, located at Lake Minnetonka, had a rise in water level of 6 feet from the lowest level of 1990. A well (443935091252901), in southeastern Minnesota, had a water level range of only 0.5 foot for the entire water year. Most of the wells in this part of the State are in the upper Prairie du Chien-Jordan aquifer and do not affect the Mount Simon-Hinckley Aquifer. Another well (450403093544501) in a rural setting of central Minnesota had a steady monthly water level rise of 1.1 feet over the previous water year.

Cretaceous Aquifer

Water levels in 4 wells completed in Cretaceous Sandstones were measured during the water year. Two of these wells in south-central Minnesota had gradual water level rises of 4 to 5 feet from their low levels of 1988 which was a drought year. In one well (440409094304901) the water rose 2 feet in response to 6 inches of above average rainfall during April and May of 1991. Water level in the other well (434359094422201) rose only 0.5 foot during this same period; 4 inches of above average rainfall fell in the area of this well. The latter well has a top screen setting of 372 feet, while the former well has a top screen setting of 100 feet. One well (441705096084501) in southwestern Minnesota, completed in the Dakota Sandstone (screened at 900 feet), had very little annual water level change about 0.10 foot for the water year (see hydrograph page 221).

Sioux-Quartzite Aquifer

Two wells completed in the Sioux Quartzite in southwestern Minnesota were measured during the water year. One of these wells (434725094483001) with 10 years of record had new record low levels from October through March. This same well also had new monthly low levels for the entire previous water year and September of water year 1989 (19 consecutive months). These low water levels are probably related to deficient precipitation in previous years in this part of the State. The other well (434742095191501), located in southwestern Minnesota, had average water levels from October through March and above average April to September. Water levels in this well were also lower during water year 1990 but did not set any monthly records. It should be noted that the depth to the quartzite aquifer in the former well is 121 feet and in the latter well 225 feet.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

National Stream Quality Accounting Network (NASQAN) is a national data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional waterquality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of the hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, and aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Tritium network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surfacewater stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1991 water year that began October 1, 1990, and ended September 30, 1991. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for the surface and ground water, and ground-water-level data.

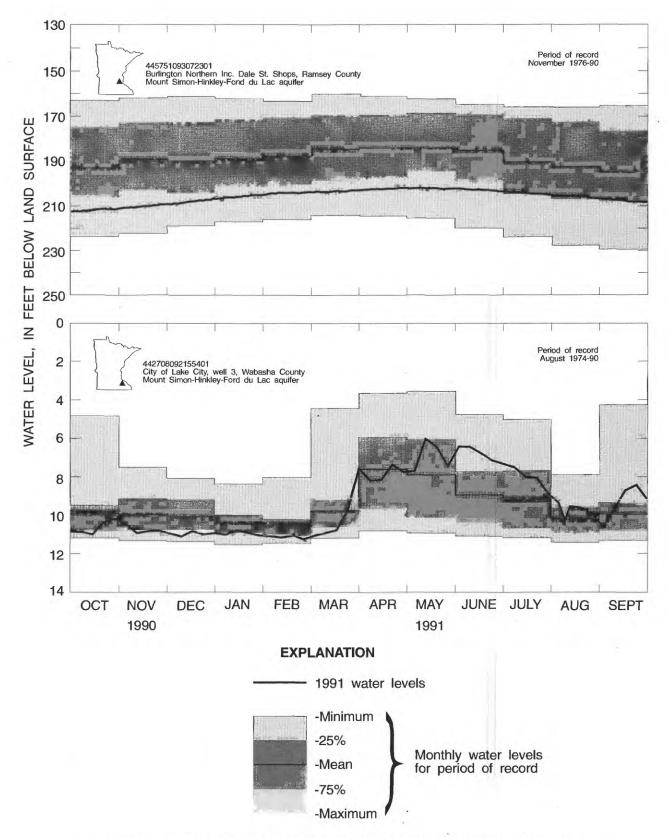


Figure 5e.—Relation of water levels during 1991 to long-term levels in two representative wells in the Mount Simon-Hinkley-Ford du Lac aquifer.

The locations of the stations and wells where the data were collected are shown in figures 7, 8, 9, and 10. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

STATION IDENTIFICATION NUMBERS

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The system used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Minnesota, for surface-water stations where only miscellaneous measurements are made.

Downstream Order System and Station Number

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream sections is listed between them. A similar order is followed by listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indentation in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 05041000, which appears just to the left of the station name, includes the 2-digit part number "05" plus the 6-digit downstream order number "041000."

Latitude-Longitude System for Wells and Miscellaneous Sites

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. See figure 6. Each well site is also identified by a local well number which consists of township, range, and section numbers, three letters designating 1/4, 1/4, 1/4 section location, and a two-digit sequential number.

RECORDS OF STAGE AND WATER DISCHARGE

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either

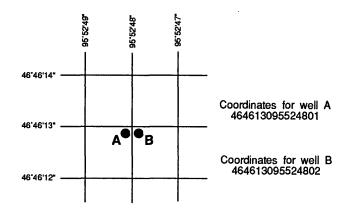


Figure 6.--Example of system for numbering wells and miscellaneous sites.

instantaneous or mean daily discharge may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations".

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Highflow partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and high-flow partial-record stations for which data are given in this report are shown in figures 7 and 9.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is

necessary to define extremes of discharge outside the range of current-meter measurements, the curves are extended using: (1) logarithmic-plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means, of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharge over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surfacewater discharge station (gaging station) now consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.—Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.—Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.—This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time when the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.—Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all reports in which revisions have been published for the station and water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datum of previous gages are given under this heading.

REMARKS.—All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.—Included here is the information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the district office (address given on the back of title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and to the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraphs is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN"); or in acre-feet (line headed "AC-FT). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figure are identified by a symbol and corresponding footnote.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS 19_-19_, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS 19_-19_," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

- ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by symbol and corresponding footnotes.
- ANNUAL MEAN.—The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. At least 5 complete years of record must be available before this statistic is published for the designated period.
- HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.
- LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.
- HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.
- LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.
- ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the

initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)

INSTANTANEOUS PEAK STAGE.—The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF (AC-FT).—Indicates the depth, in acrefeet, to which the drainage area would be covered if all the runoff for the year were uniformly distributed on it.

ANNUAL RUNOFF (CFSM).—Indicates the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area for the year.

ANNUAL RUNOFF (INCHES).—Indicates the depth to which the drainage area would be covered if all the runoff for the year were uniformly distributed on it.

10 PERCENT EXCEEDS.—The discharge that is exceeded by 10 percent of the flow for the designated period.

50 PERCENT EXCEEDS.—The discharge that is exceeded by 50 percent of the flow for the designated period.

90 PERCENT EXCEEDS.—The discharge that is exceeded by 90 percent of the flow for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the waterdischarge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated", or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily

discharges are within 5 percent of the true; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1000 ft³/s; and to 3 significant figures for more than 1000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of all discharge measurement sites in the State as well as an index of records of discharge collected by other agencies but not published by the Geological Survey. Information on records available at specific sites can be obtained upon request.

RECORDS OF SURFACE-WATER QUALITY

Records of surface water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are

obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 8.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

Onsite Measurement and Collection

In obtaining water quality data, a major concern needs to be assuring that the data obtained represents the in situ quality of water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5 Chap. A1, A3, and A4. All of these references are listed on p. 17 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey district office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S.G.S. district office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations

where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of waterdischarge measurements are on file in the district office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for indicator bacteria and specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratories in Arvada, Colo., Doraville, Ga., or Iowa City, Ia. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, when appropriate, is provided with each continuousrecord station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.—See Data Presentation under "Records of stage and Water Discharge"; same comments apply.

DRAINAGE AREA.—See Data Presentation under "Records of stage and Water Discharge"; same comments apply.

PERIOD OF RECORD.—This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.—Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.—Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.—If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
K	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organisms count less than 0.5 percent (organisms may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant

RECORDS OF GROUND-WATER LEVELS

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Minnesota are shown in figure 10.

Although, in this report, records of water levels are presented for fewer than 200 wells, records are obtained through cooperative efforts of many Federal, State, and local agencies for several hundred observation wells throughout Minnesota and are placed in computer storage. Each spring, the Minnesota Department of Natural Resources, Division of Waters publishes a report for the previous water year entitled "Observation Well Data Summary, Water Year 19_." This report contains hydrographs of recorder wells, detailed maps showing the location of active observation wells, and other useful items. Information about the availability of the data in the water-level file may be obtained from the District Chief, Minnesota District. (See address on back of front page).

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well assure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape or from the graph or punched tape of a water-stage recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (Isd). Land-surface datum is a datum plane that is approximately at land surface at each well. If nown, the elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

All water-level measurements are reported to the nearest hundredth of a foot. The error of water-level measurements is normally only a hundredth or a few hundredth of a foot.

Hydrographs showing water-level fluctuations are included for 28 representative wells; 7 in surficial-sand aquifers, 6 in buried-sand aquifers, and 15 in bedrock aquifers.

Data Presentation

Each well consists of two parts, the station description and the data table of water levels observed during the water year. In addition a graph of water levels for the current year or other selected period is included for several representative wells. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.—This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes and seconds); a landline location designation; the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.— This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.—This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and includes additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.—This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in the top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.—This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that are also water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.—This entry indicates the period for which there are published records for the well. It reports the month and year of the start of the publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR THE PERIOD OF RECORD.—This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum and all taped measurements of water level are listed. For wells equipped with recorders, abbreviated tables are published; generally, only water-level lows are listed for every fifth day and at the end of the month (com). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. A hydrograph for a selected period of record follows the water-level table for several representative wells.

RECORDS OF GROUND-WATER QUALITY

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records

obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigation" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO WATSTORE DATA

The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As part of the U.S. Geological Survey's program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the U.S. Geological Survey and to facilitate release of the data to the public. A variety of useful products, ranging from data tables to complex statistical analyses such as Log Pearson Type III, can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia, and consists of related files and data bases.

- * Station Header File Contains descriptive information on more than 440,000 sites throughout the United States and its territories where the U.S. Geological Survey collects or has collected data.
- Daily Values File Contains more than 220 million daily values of stream flows, stages, reservoir contents, water temperature, specific conductances, sediment concentrations, sediment discharges, and ground-water levels.
- Peak Flow File Contains approximately 500,000 maximum (peak) streamflow and gage-height values at surface-water sites.
- * Water Quality File Contains approximately 2 million analyses of water samples that describe the chemical, physical, biological, and radio-chemical characteristics of both surface and ground water.
- * Ground-Water Site Inventory Data Base Contains inventory data for more than 900,000 wells, springs, and other sources of ground water. The data includes site location, geohydrologic characteristics, well-construction history, and one-time field measurements such as water temperature.

In 1976, the U.S. Geological Survey opened WATSTORE to

the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requester will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting:

U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, Virginia 22092

In addition to providing direct access to WATSTORE, data can be provided in various machine-readable formats on magnetic tape or 5-1/4 inch floppy disk; and, as noted in the introduction, on CD-ROM discs. Beginning with the 1990 water year, all water-data reports will also be available on Compact disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division's District offices. (See address on the back of the title page.) A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, Colorado 80225.

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting inch-pound units to International System of units (SI) on the inside of back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is the primary energy donor in cellular life process. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP, therefore, provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

<u>Algae</u> are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore- forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35oC. In the laboratory these bacteria are defined as the organisms which produce colonies with a golden-green metallic sheet

within 24 hours when incubated at 35°C + 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C ±0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal streptococcal bacteria</u> are bacteria also found in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C ±1.0°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Bed material</u> is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

<u>Biomass</u> is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m^3) , and periphyton and benthic organisms in grams per square meter (g/m^2) .

<u>Dry mass</u> refers to the weight of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed Material.

Cells/volume refers to the number of cells or any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

<u>Cfs-day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, or about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or

industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

<u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Cubic feet per second per square mile</u> (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Cubic foot per second</u> (FT³/s, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

<u>Instantaneous discharge</u> is the discharge at a particular instant of time.

Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calender year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

<u>Dissolved</u> refers to the amount of substance present in true chemical solution. In practice, however, the term includes all forms of substance that will pass through a 0.45-micrometer membrane filter, and thus may include some very small (colloidal) suspended particles. Analyses are performed on filtered samples.

<u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Diversity index</u> is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where 'n_i' is the number of individuals per taxon, 'n' is the total number of individuals, and 's' is the total number of taxa in the

sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

<u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egglarva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram (UG/G, ug/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

<u>Micrograms per kilogram</u> (MG/KG, mg/kg) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (kilogram) of sediment.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level

over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional waterquality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases, The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter code numbers</u> are unique five-digit code numbers assigned to each parameter placed into storage. These codes are assigned by the Environmental Protection Agency and are also used to identify data exchanged among agencies.

<u>Partial-record station</u> is a particular site where limited streamflow and (or) water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in distilled water (chemically dispersed).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	.004062	Sedimentation
Sand	.062 - 2.0	Sedimentation or sieve
Gravel	2.0 - 64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

<u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

<u>Picocurie</u> (PC, pCi) is one trillionth (1×10^{-12}) of the amount of radioactivity represented by a curie (C1). A curie is the amount of radioactivity that yields 3.7×10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

<u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time $[mg \ C/(m^2 \cdot time)]$ for periphyton and macrophytes and mg $C/(m^3 \cdot time)$ for phytoplankton are units for expressing

primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time $[mg\ 0_2/(m^2 \cdot time)]$ for periphyton and macrophytes and $mg\ 0_2/(m^3 \cdot time)]$ for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotypes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Return period</u> is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u> is the velocityweighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

<u>Suspended-sediment load</u> is quantity of suspended sediment passing a section in a specified period.

<u>Total sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

<u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

 $\underline{7\text{-day }10 \text{ year low flow}}$ (7 Q_{10}) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as a streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lived.

<u>Natural substrates</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and miltiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the

planimetered map was made. All areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a watersediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 micrometer filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common.

For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u> is the following:

Kingdom	Animal
	Arthropoda
	Insects
Order	Ephemeroptera
Family	Ephermeridae
Genus	Нехадетіа
Species	Hexagenia limbata

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

<u>Tons per acre-foot</u> indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

<u>Tons per day</u> is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total recoverable refers to the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent percent in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surfacewater stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water year in Geological Survey reports dealing with surfacewater supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1991, is called the "1991 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in reference to published reports beginning in 1975.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WRD is used as an abbreviation for "Water-Resources Data"

in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

 \underline{WSP} is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

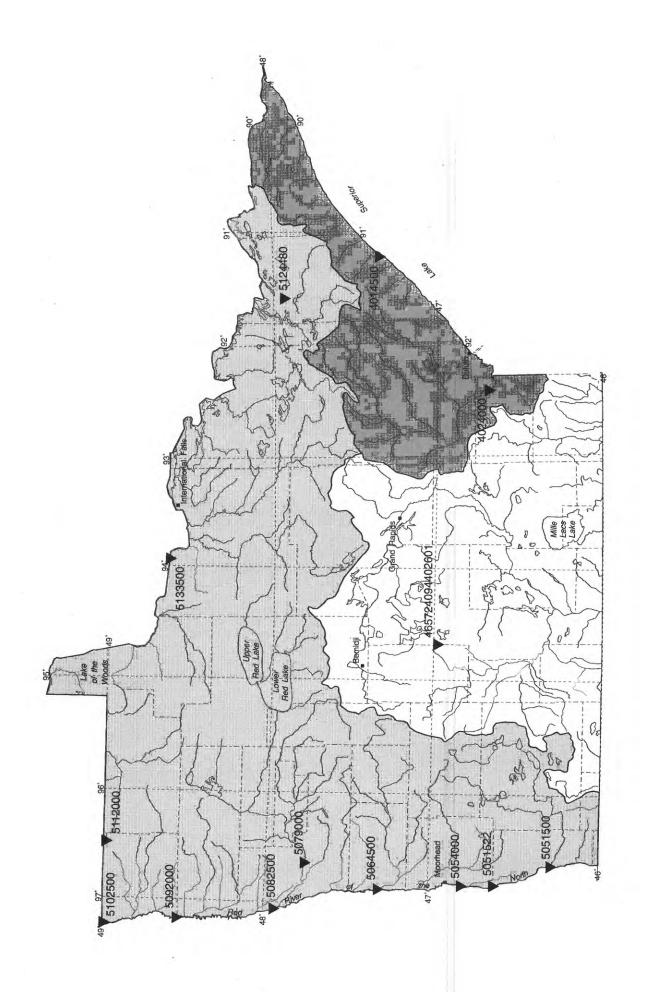
PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS—TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. McCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W. Scott Keys: USGS--TWRI Book 2, Chapter E2. 1990. 150 pages.
- 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS- TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968.60 pages.
- 3-A4. Measurement of peak discharge at width contractions by idirect methods, by H. F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3. Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969.65 pages.
- 3-A9. Measurement of time of travel in streams by dye tracing, by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-Alo. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.

- 3-A11. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS--TWRI Book 3, Chapter A12. 1986. 41 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathburn, N. Yotsukura, G. W. Parker, and L. L. DeLong: USGS--TWRI Book 3, Chapter A18. 1989. 52 pages.
- 3-A19. Levels of streamflow gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A19. 1990. 27 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G. D. Bennett: USGS-- TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-water flow, by Richard L. Cooley and Richard L. Naff: USGS--TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M. J. Fishman and L. C. Friedman: USGS--TWRI Book 5, Chapter A1. 1989. 545 pages.


PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS--TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L. J. Britton and P. E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5, 1977, 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6, 1982, 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy; USGS-TWRI Book 5, Chapter C1. 1969. 58 pages.
- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter A1. 1988. 586 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS-TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

Surface-water Station Records

South Fork Zumbro River near Rochester May 8, 1958

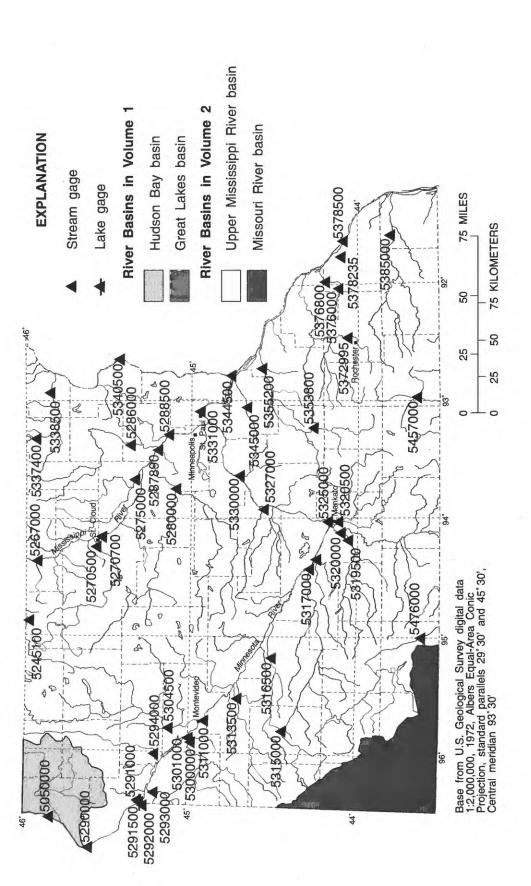
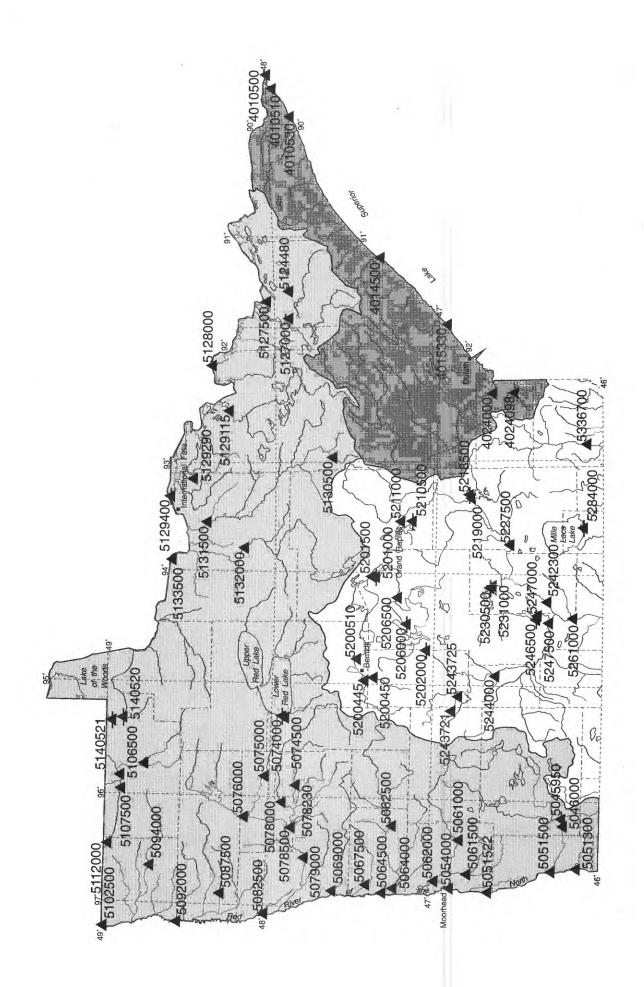



Figure 7.-Location of lake and stream-gaging stations

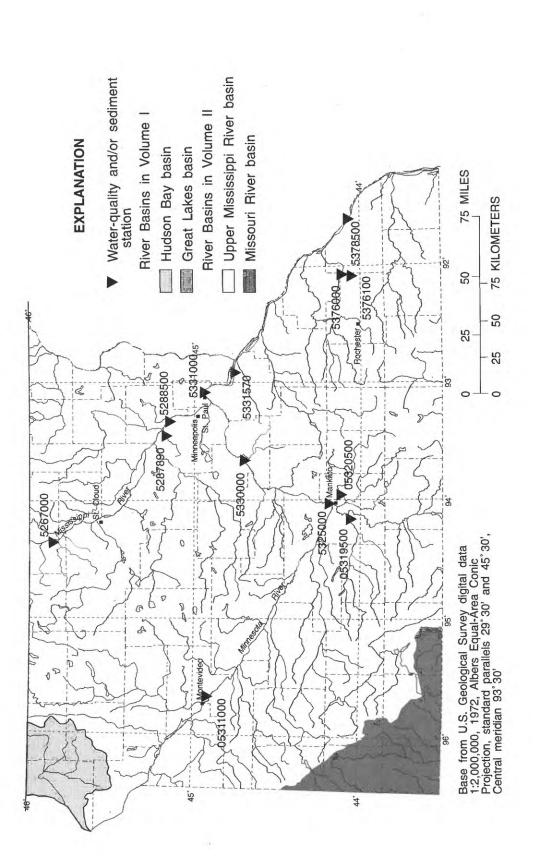


Figure 8.--Location of surface-water-quality stations

MISSISSIPPI RIVER MAIN STEM

05200510 MISSISSIPPI RIVER NEAR BEMIDJI, MN

LOCATION.--Lat 47°29'00", long 94°43'40", in SE\SW\ sec.3, T.146 N., R.32 W., Beltrami County, Hydrologic Unit 07010101, 3.5 mi east of Bemidji on right bank 100 ft upstream of County Highway 12 and 400 ft downstream from Stump Lake dam.

DRAINAGE AREA. -- 610 mi², approximately.

PERIOD OF RECORD. -- September 1987 to current year (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 1,315 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Stump Lake dam upstream from station.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October, March to September, 773 ft3/s, May 17, gage height, 4.58 ft; minimum, 34 ft3/s, Oct. 16, gage height, 2.27 ft.

		DISCHARGE,	CUBIC FEET	PER SECOND, WATER	YEAR OCTOBE	R 1990 TO S	SEPTE	MBER 1	991			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	56						187	200	487	127	e85	100
2	51						185	197	473	125	e85	101
3	71						151	195	466	127	90	103
4	74						190	202	337	128	95	103
5	65	===					190	213	247	152	95	103
6	67						192		252	188	95	103
7	67						192		238	186	95	
8	66						192		231	185	95	100
9	66						192		196	185	96	102
10	65		-				192	254	183	186	97	107
11	66						139	270	223	185	96	106
12	66						112	280	220	185	94	106
13	66						114	289	218	185	97	136
14	69 71						114	326 400	216 213	185 185	97 96	201
13	11						113	400	213	103	90	200
16	72						102	416	210	185	97	162
17	81	===					111	553	141	185	98	126
18 19	78 80					278	111	672 648	99	186 129	97 91	136
20	80					278	121	629	101	100	85	129
21	82		222			281	120	613	100	103	94	124
22	82					281	139	583	99	106	94	127
23	84					281	160	577	98	109	95	125
24	85					283	150	523	96	153	93	122
25	86					284	159	463	93	190	67	131
26	83				222	284	193	457	e86	190	83	135
27	82					231	193	452	82	190	96	138
28 29	83 99					184 185	193 193	344	94 125	190 190	99	139
30	99					185	199	259	128	190	101	142
31	99					186		306		149	100	
TOTAL	2341						4721	11691	5851	5050	2897	3780
MEAN							157	377	195	163	93.5	126
MAX	99						199	672	487	190	101	201
MIN	51						102	195	82	100	67	100
AC-FI							9360	23190	11610		5750	7500
CFSM				775			.26	.62	.32	.27	.15	.21
IN.	.14			5-25-CA			.29	.71	.36	.31	.18	.23
STATI	STICS	OF MONTHLY MEAN DA	TA FOR WATE	R YEARS 1987 - 19	91, BY WATER	YEAR (WY)						
MEAN	157						277	360	224		90.7	120
MAX	263	-,					399	479	300	163	119	214
(WY)							1989	1989	1989		1988	
MIN (WY)							157 1991	278 1988	104		61.9	
		A. A. C. A. A.					1991	1300	1300	1900	1303	1330
SUMMA	RY STAT	ISTICS	FOR 1991	WATER YEAR	WATER YEAR	RS 1987 - 1	991					
LOWES ANNUA INSTA INSTA INSTA 10 PE 50 PE	NTANEOU NTANEOU	MEAN I-DAY MINIMUM IS PEAK FLOW IS PEAK STAGE IS LOW FLOW EXCEEDS EXCEEDS	773 4.58 34	May 17 May 17 Oct 16	771 22 24 887 4.87 16 382 163 68	Apr 28 1 Jul 12 1 Jul 7 1 Apr 27 1 Apr 27 1 Sep 26 1	988 988 989 989					

e Estimated

UPPER MISSISSIPPI RIVER BASIN

MISSISSIPPI RIVER MAIN STEM

05201000 WINNIBIGOSHISH LAKE NEAR DEER RIVER, MN

LOCATION.--Lat 47°25'42", long 94°03'00", in sec.25, T.146 N., R.27 W., Itasca County, Hydrologic Unit 07010101, on Leech Lake Indian Reservation, at dam on Mississippi River, 1 mi northwest of Little Winnibigoshish Lake, 14 mi northwest of city of Deer River, and at mile 1,248 upstream from Chio River.

DRAINAGE AREA. -- 1.442 mi².

PERIOD OF RECORD. -- April 1884 to current year. Prior to October 1941 monthend contents only, published in WSP 1308. Published as Winnibigoshish Reservoir near Deer River October 1941 to September 1956.

REVISED RECORDS .-- WSP 1308: 1905(M).

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to July 8, 1949, nonrecording gage at same site, and July 9, 1949, to July 10, 1973, water-stage recorder at same site and at datum of 1,288.94 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by Winnibigoshish Lake and several other natural lakes controlled by a concrete and timber dam, completed in 1884; storage began in 1884. Capacity between elevations 1,294.94 ft and 1,303.14 ft (maximum allowable range) is 668,737 acre-ft of which 439,636 acre-ft is controlled storage between elevations 1,294.94 ft and 1,300.94 ft (normal operating range). Contents shown herein are contents above elevation 1,286.00 ft. Prior to September 1978, published contents as contents above elevation 1,288.94 ft. Water is used to benefit navigation on Mississippi River below Minneapolis.

COOPERATION .-- Records were provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 996,500 acre-ft, capacity table then in use, July 30, 1905, elevation, 1,303.39 ft; minimum observed, 33,680 acre-ft, below zero of capacity table then in use, Oct. 20, 1931, elevation, 1,288.25 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 720,870 acre-ft, June 2, elevation, 1,298.51 ft; minimum, 616,510 acre-ft, Nov. 8, elevation, 1,296.92 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

		Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30		1,297.42	649,300	
Oct.	31		1,297.16	632,250	-17,050
Nov.	30		1,297.02	623,050	-9,190
Dec.	31		1,297.21	635,520	+12,470
CAL	YR	1990			-2,590
Jan.	31		1,297.32	642,730	+7,210
Feb.	28		1,297.43	649,960	+7,220
Mar.	31		1,297.53	656,520	+6,560
Apr.	30		1,298.03	689,360	+32,830
May	31		1,298.47	718,240	+28,880
June	30		1,298.14	696,580	-21,660
July	31		1,298.22	701,830	+5,250
Aug.	31		1,297.92	682,130	-19,690
Sept.	30		1,298.03	689,360	+7,220
WTR	YR	1991			+40,060

MISSISSIPPI RIVER MAIN STEM

05201500 MISSISSIPPI RIVER AT WINNIBIGOSHISH DAM NEAR DEER RIVER, MN

LOCATION.--Lat 47°25'42", long 94°03'00", in SWk sec.25, T.146 N., R.27 W., Itasca County, Hydrologic Unit 07010101, on Leech Lake Indian Reservation, at dam 1 mi northwest of Little Winnibigoshish Lake, 14 mi northwest of city of Deer River, and at mile 1,248 upstream from Ohio River.

DRAINAGE AREA, -- 1,442 mi².

PERIOD OF RECORD. -- May 1884 to current year. Monthly discharge only for some periods, published in WSP 1308.

GAGE. --Water-stage recorder on headwater and nonrecording gage on tailwater. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U. S. Army Corps of Engineers). Prior to June 30, 1973, gages at same sites with datum at 1,289.47 ft, adjustment of 1912. Prior to July 8, 1949, nonrecording headwater gage at same site and datum in use.

REMARKS.--Daily discharge is computed on the basis of modified weir formula and corrected to conform with discharge measurements, the head being determined from readings of headwater and tailwater gages. Flow completely regulated by Winnibigoshish Lake (station 05201000).

COOPERATION . -- Daily discharge computed by U. S. Army Corps of Engineers.

AVERAGE DISCHARGE (unadjusted).--107 years, 518 ft³/s, 4.88 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 4,370 ft³/s, Aug. 6, 1905; no flow at times in several years.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 700 ft³/s, Oct. 23 to Nov. 7; minimum daily, 101 ft³/s, Apr. 4 to 23, June 28 to July 1.

-	ŕ	DISCHAR	GE, CUBI	C FEET PE	R SECOND, DAILY	WATER MEAN	YEAR OCTOB VALUES	ER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	500	700 700	148	197 197	249	249 249		101 101	501 49 9	101 102	402 398	151 151
	500		148		249							
3	500	700	148	197	249	249		101	499	102	395	151
4	500	700	148	197	249	249		101	499	102	3 9 5	151
5	500	700	148	197	249	249	101	101	497	102	395	151
6	500	700	148	197	249	249		101	497	153	397	151
7 .	500	700	148	197	249	249		101	497	204	397	151
8	500	625	148	197	249	249		101	497	204	398	151
9	500	575	148	248	249	249		101	491	204	346	151
10	550	475	148	248	249	249	101	101	493	204	350	151
11	550	475	148	248	249	249	101	101	500	204	350	151
12	550	475	148	248	249	249	101	101	500	302	350	151
13	550	475	148	248	249	249	101	101	500	3 9 8	350	151
14	550	300	196	248	249	249	101	101	450	498	349	152
15	550	200	196	248	249	249		101	450	498	349	152
16	550	200	196	248	249	249	101	101	450	396	349	152
17	550	148	196	248	249	249		101	450	304	350	202
18	600	148	196	248	249	249		101	401	202	350	253
19	600	148	198	248	249	249		101	351	203	350	302
20	650	148	196	248	249	249		101	351	202	349	351
21	650	148	196	248	249	249	101	101	252	203	349	400
22	650	148	197	248	249	249		101	252	203	349	400
23	700	149	197	248	249	250		101	252	203	300	400
23 24	700	149	197	249	249	250		150	252	203	251	446
25	700	148	197	249	249	250		253	202	303	201	495
26	700	148	197	249	249	250	101	349	152	303	201	495
27	700	148	197	249	249	250		445	102	303	201	494
28	700	148	197	249	249	250		445	101	303	201	494
29	700	148	197	249		250		501	101	303	201	494 494
30	700	148	197	249		250		501	101	351	201	
31	700	10774	197	249	6972	250 7728		501 5468	11140	400 7763	201 10025	8139
TOTAL	18350		5462	7288				176	371	250	323	271
MEAN MAX	592 700	35 9 700	176	235 249	249 249	249 250	111 250	501	501	498	402	495
MIN	500	148	197 148	197	249 249	249		101	101	101	201	151
AC-FT	36400	21270	10020	14460	12920	15330		10850	22100	15400	19880	16140
CFSM	.41	.25	10030	14400	13030	.17		.12	.26	.17	.22	.19
IN.	.47	.28	1.12	10	18	.20	.09	.14	.29	.20	.26	.21
	STATIST	TCS .ZO	FOR	1000 CAT F	.17 .18 INDAR YEAR	.20	FOR 1991	WATER YEAR	. 23	.20	.20	
ANNUAL		105	POR	113117	MUMIC IMMIC		102435	MILLEN IME				
ANNUAL				310			281					
HIGHEST	ANNUAL	MEAN		020								
LOWEST	ANNUAL M	EAN										
	DAILY M			1260 100 100 224400	Jul 1		700	Oct 23				
LOWEST	DAILY ME	AN		100	Apr 7		101	Apr 4				
ANNUAL.	SEVEN-DA	MINIMUM Y		100	Apr 7		101	Apr 4				
ANNIIAT.	RIINOFF (AC-FT)		224400	-		203200	-				
ANNUAL	RUNOFF (RUNOFF (ENT EXCE	CFSM)		2.9	21			19				
ANNUAL	RUNOFF (INCHES)		2.9	2		2.	64				
10 PERC	ENT EXCÈ	EDS		700			500					
50 PERC	ENT EXCE	EDS		205			249					
90 PERC	ENT EXCE	EDS		100			101					

05202000 WILLIAMS LAKE NEAR AKELEY. MN

LOCATION.--Lat 46°57'24", long 94°40'26", in SE\nW\s sec.12, T.140 N., R.32 W., Hubbard County, Hydrologic Unit 07010102, on northwest shore of Williams lake, 4 mi southeast of Akeley.

DRAINAGE AREA--0.88 mi².

GAGE-HEIGHT RECORDS

PERIOD OF RECORD--October 1988 to current year. August 1977 to September 1988, in files of the U.S. Geological Survey's Hydrology of Lakes Section in Denver, Colorado.

GAGE--Water-stage recorder. Datum of gage is 1,379.09 ft above National Geodetic Vertical datum of 1929. Prior to Oct. 1, 1990, at datum 2.00 ft higher.

EXTREMES FOR PERIOD OF RECORD--Maximum gage height, 3.33 ft, present datum, June 25, 1989; minimum, 1.72 ft, Sept. 5, 1991.

EXTREMES FOR CURRENT YEAR--Maximum gage height, 2.53 ft, May 13, 24, 25; minimum, 1.72 ft, Sept. 5.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES												
DAY	OCT	МОЛ	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.08	2.18	2.04	2.09	2.12	2.24	2.23	2.42	2.48	2.34	2.06	1.83
2	2.07	2.16	2.04	2.09	2.13	2.26	2.24	2.42	2.48	2.32	2.05	1.81
3	2.18	2.16	2.05	2.10	2.14	2.25	2.24	2.41	2.47	2.33	2.05	1.84
4	2.20	2.15	2.06	2.09	2.14	2.26	2.25	2.45	2.45	2.35	2.07	1.77
5	2.18	2.15	2.05	2.09	2.13	2.27	2.25	2.46	2.43	2.33	2.05	1.73
6	2.16	2.14	2.04	2.09	2.13	2.26	2.24	2.48	2.42	2.33	2.04	1.75
7	2.15	2.13	2.04	2.09	2.12	2.24	2.25	2.49	2.41	2.32	2.02	1.74
8	2.14	2.11	2.03	2.10	2.11	2.21	2.25	2.50	2.39	2.31	2.01	1.76
9	2.13	2.12	2.03	2.10	2.11	2.20	2.24	2.49	2.38	2.29	1.99	1.91
10	2.12	2.12	2.04	2.10	2.11	2.19	2.24	2.49	2.39	2.29	1.98	1.91
11	2.10	2.11	2.05	2.11	2.10	2.19	2.24	2.49	2.37	2.28	1.98	1.88
12	2.10	2.10	2.04	2.11	2.13	2.19	2.22	2.49	2.37	2.29	1.96	1.88
13	2.10	2.10	2.03	2.11	2.18	2.19	2.22	2.51	2.37	2.30	1.95	1.92
14	2.09	2.10	2.06	2.11	2.17	2.20	2.27	2.51	2.36	2.28	1.95	1.98
15	2.08	2.09	2.06	2.11	2.15	2.19	2.31	2.51	2.34	2.27	1.92	1.99
16	2.08	2.09	2.04	2.11	2.15	2.19	2.32	2.51	2.34	2.25	1.91	1.98
17	2.18	2.08	2.03	2.11	2.17	2.20	2.33	2.49	2.32	2.24	1.95	1.96
18	2.24	2.08	2.04	2.10	2.18	2.20	2.33	2.46	2.30	2.24	1.94	1.95
19	2.24	2.08	2.08	2.10	2.23	2.20	2.33	2.46	2.28	2.23	1.92	1.87
20	2.24	2.08	2.13	2.10	2.24	2.15	2.32	2.43	2.29	2.22	1.91	1.86
21	2.24	2.08	2.09	2.10	2.22	2.14	2.32	2.43	2.33	2.22	1.90	1.85
22	2.23	2.08	2.09	2.11	2.21	2.14	2.32	2.43	2.33	2.23	1.91	1.82
23	2.22	2.07	2.09	2.11	2.19	2.18	2.32	2.46	2.31	2.21	1.93	1.84
24	2.21	2.07	2.09	2.10	2.22	2.21	2.31	2.52	2.29	2.18	1.92	1.83
25	2.21	2.06	2.09	2.10	2.24	2.23	2.31	2.53	2.29	2.16	1.96	1.85
26 27 28 29 30 31	2.20 2.20 2.18 2.19 2.18 2.18	2.06 2.06 2.05 2.04 2.04	2.09 2.09 2.09 2.09 2.09 2.09	2.11 2.12 2.11 2.10 2.10 2.10	2.24 2.24 2.24 	2.25 2.25 2.23 2.22 2.23 2.23	2.30 2.30 2.32 2.34 2.42	2.50 2.50 2.50 2.50 2.51 2.49	2.27 2.27 2.26 2.28 2.26	2.14 2.13 2.13 2.11 2.09 2.08	1.95 1.92 1.90 1.86 1.86 1.82	1.83 1.80 1.79 1.79
MEAN	2.16	2.10	2.06	2.10	2.17	2.21	2.29	2.48	2.35	2.24	1.96	1.85
MAX	2.24	2.18	2.13	2.12	2.24	2.27	2.42	2.53	2.48	2.35	2.07	1.99
MIN	2.07	2.04	2.03	2.09	2.10	2.14	2.22	2.41	2.26	2.08	1.82	1.73

465724094402601 WILLIAMS LAKE NEAR AKELEY, MN

LOCATION.--Lat*57'24", long 94*40'26", in SEkNEk sec.12, T.140 N., R.32 W. Hubbard County, Hydrologic Unit 07010102. Samples are collected near the center of the lake at the deepest point.

DRAINAGE AREA. -- 0.875 mi².

PERIOD OF RECORD, -- Water years 1977 to current year.

REMARKS. -- Additional data are available by contacting the district office.

DATE	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)
OCT												
11 11	175	8.1	22	7.3	1.3	0.90	92	<1.0	0.70	0.20	1.3	
11												
11 11												
11	175	8.1	22	7.3	1.3	0.90	92	<1.0	0.80	0.20	1.3	
11												<0.010
25 25	176	6.1	23	7.4	1.3	0.90	93	<1.0	<0.10	<0.10	0.80	
25					,							
25 25												
25	176	8.1	23	7.4	1.3	0.90	93	<1.0	0.20	<0.10	0.80	
25 NOV												
09												
09	178 	8.0 	24	7.5	1.4	0.90	94	<1.0	1.3	<0.10	0.70 	
09 09												
09												
09 09	179 	_8.1 	23	7.3 	1.3	0.90	94	<1.0 	1.6	<0.10	0.60	<0.010
DEC												
13 13	190	8.1	27	8.0	1.4	0.90	108	<1.0	0.20	<0.10	0.60	
13												
13 13									 			
13	188	8.0	27	7.9	1.4	0.90	100	<1.0	0.30	<0.10	0.70	
13 Jan												<0.010
24												
24 24	197 	8.3	28	8.6 	1.5	1.0	104	<1.0	0.30	<0.10	0.70 	
24												
24												
24 24	202	7.9 	2 8 	8.4	1.4	1.0	106	<1.0	0.30	<0.10	0.90	 <0.010
FEB												
21 21	205	 8.0	29	8.2	1.4	1.1	107	<1.0	0.80	0.20	0.60	
21												
21 21								 				
21	219	7.5	31	8.5	1.5	1.3	113	<1.0	0.70	0.10	1.7	
21 MAR												0.030
27												
27 27	205 	7.8	28	8.0	1.4	0.90	107	<1.0	1.6		0.80	
27												
27												
27 27	214	8.2	30 	8.2	1.5	1.1	112	<1.0	<0.10		1.1	
APR												
17 <i>.</i> 17 <i>.</i>	194	8.4	27	7.8	1.4	1.3	99	0.40	1.6		0.60	
17												
17 17												
17	190	8.0	27	7.7	1.3	1.0	101	0.20	1.8		0.60	
17												

465724094402601 WILLIAMS LAKE NEAR AKELEY, MN--Continued

DATE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS-PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
OCT												
11 11						0.014			9	3		
11						0.012				3		
11						0.012						
11 11						0.012 0.012			10	3		
11	<0.100		<0.010		1.2		<0.010			"	7.60	<0.200
25						0.010				,		
25 25						0.011			17	4		
25. <i>.</i> .		.=-				0.009						
25 25						0.005 0.004			13	3		
25		0.025		0.036		0.004		0.004		3	14.0	<0.200
NOV												
09 09						0.011			5	4		
09						0.035			0	'		
09						0.007						
09 09						0.008 0.007			4	2		
09 DEC	<0.100	0.037	0.010	0.055	0.60	0.016	0.010	0.001			7.60	<0.100
13						<0.001						
13 13						0.001			16 	1		
13						0.020						
13 13						0.004				3		
13 JAN	<0.100	0.040	0.080	0.042	0.80	0.011 <0.001	<0.010	<0.001	5	3		
24						0.013						
24									5	<1		
24 24						0.006 0.003						
24						0.008						
24 24	<0.100	0.041	0.110	0.103		0.005	0.010		32	13	0.500	<0.100
FEB		0.041	0.110	0.103	0.60	0.009	0.010	<0.001			0.300	~0.100
21 21						0.015			28	21		
21				~-		0.011						
21 21						0.006						
21						0.008 0.029			82	160		
21	<0.100	0.044	0.220	0.216	0.80	0.007	<0.010	<0.001			0.500	<0.100
MAR 27						0.001						
27									7	5		
27						0.004						
27						<0.001						
27						0.004			13	5		
27 APR		0.142		0.157	0.80	0.005		<0.001			0.700	<0.100
17						0.007						
17 17						0.008			⁵	3		
17						0.006						
17						0.006			,	,		
17 17		0.050		0.090	0.60	0.011 0.008		<0.001	4	4	1.80	<0.100

465724094402601 WILLIAMS LAKE NEAR AKELEY, MN--Continued

DATE	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
MAY										
02										
02 02	188	8.0	27	7.3	1.3	0.90	100	0.40	0.70	0.30
02										
02				 .						
02 02	189	8.1	28	7.4	1.3	1.0	100	0.50	0.60	0.30
16										
16	187	8.4	27	7.5	1.3	0.90	100	0.40	0.20	0.20
16										
16 16										
16	140	7.6	16	4.5	0.90	1.0	5 9	0.50	0.20	0.30
16										
30 30	183	8.6	26	7.2	1.3	0.90	98	0.20	0.60	0.30
30										
30										
30							101			
30 30	191 	7.7	27	7.3	1.4	1.0	101	0.40	0.60	0.40
JUN										
19										
19 19	177	8.7 	25	7.6	1.4	1.0	94	0.50	<0.10	1.7
19										
19										
1 9 19	195	7.6 	29	7.8	1.4	1.0	103	0.70	<0.10	0.80
JUL										
03										
03	174	8.6	24	7.4	1.3	0.90	92	0.60	0.70	0.70
03 03										
03										
03	198	7.5	28	7.7	1.3	1.0	103	0.70	0.70	0.90
03 18										
18	166	8.6	23	7.5	1.5	0.80	90	0.40	<0.10	1.8
18										
18										
18 18	201	7.3	28	7.6	1.4	0.90	107	0.70	<0.10	1.5
18										

465724094402601 WILLIAMS LAKE NEAR AKELEY, MN--Continued

MAY	DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
02	MAY									
02 0.010 <					0.008					
02							<3	1		
02										
02 0.032 0.086 0.50 0.088 <0.001	02									
02	02									
16							5			
16 5 2 16 0.012 16 0.012 16 0.021 16 0.018 0.086 0.60 0.010 <0.001	02									
16 0.012	10									
16										
16										
16 0.018 0.086 0.60 0.010 7 8 <td></td>										
16 0.018 0.086 0.60 0.010 <0.001							7	8		
30		0.018	0.086	0.60		<0.001				
30										
30							11	1		
30					0.008					
30										
30										
JUN 19							33			
19		0.027	0.026	0.60	0.010	<0.001			2.10	<0.200
19				_	0 012	_				
19							7			
19							'			
19										
19										
19							29	98		
JUL 03		0.006	0.024	0.70		0.005			1.30	<0.200
03	JUL			- • • -						
03					0.003					
03	03						5	9		
03	03									
03										
03 0.007 0.020 0.90 0.016 <0.001 2.30 0.100 18 0.001 17 54 18 0.007 17 54 18 0.003 18 0.005 18 0.005 18 0.005 18 0.005										
18 0.001 18 0.007 18 0.003 18 0.005 18 0.005 18 0.014 33 280							34			
18 17 54 18 0.007 18 0.003 18 0.005 18 0.014 33 280		0.007								0.100
18 0.007 18 0.005 18 0.005 18 0.014 33 280							,-			
18 0.003 18 0.005 18 0.014 33 280							1/			
18 0.005 18 0.014 33 280										
18 0.014 33 280										
18 0.009 0.025 1.0 0.029 <0.001 1.80 <0.200										
	18	0.009	0.025		0.029	<0.001			1.80	<0.200

465724094402601 WILLIAMS LAKE NEAR AKELEY, MN--Continued

DATE	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
AUG										
01										
01	166	8.5	22	7.7	1.3	0.80	90	0.50	0.40	1.0
01										
01 01										
01	203	7.4	30	7.9	1.4	1.0	107	0.90	0.50	2.1
01				7.5		- -				
07	165	8.5	22	7.8	1.5	0.90	89	0.40	0.20	0.80
07	166	8.5	22	7.6	1.5	0.80	91	0.30	0.20	0.70
07	165	8.6	22	7.6	1.5	0.80	89	0.60	0.20	0.70
07	165	8.5	22	7.6	1.5	0.80	89	0.40	0.40	0.70
07	165	8.5	22	7.6	1.5	0.90	89	0.40	0.40	0.80
07	165	8.5 	22	7.6	2.6	0.80	89	0.50	0.40	0.80
15 15	163	8.9	20	6,9	1.7	1.0	87	0.20	0.10	1.2
15			20		'		o,			
15										
15										
15	204	8.2	29	7.6	1.7	1.1	107	0.80	0.30	2.4
15										
29										
29 29	163	8.7	20	7.5	1.3	0.90	87	0.50	<0.10	0.90
29										
29	201	7.3	29	7.8	1.4	1.1	107	0.90	0.30	2.4
29					=- '					== '
SEP										
12										
12	167	8.1	22	7.7	1.6	0.90	90	0.50	0.50	0.80
12 12										
12										
12	208	7.2	30	8.2	1.6	1.1	109	0.60	0.60	3.3
12										
26										
26	176	7.9	23	7.8	1.4	0.90	94	0.80	1.8	2.1
26										
26										
26	175	8.0		7.7	1 2	0.00	94		10	1.1
26 26	1/3		23	/./	1.3	0.80	94	0.60	<0.10	1.1
20				_	_	_				

465724094402601 WILLIAMS LAKE NEAR AKELEY, MN--Continued

DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
AUG									
01				<0.001					
01						10	20		
01				<0.001					
01				<0.001					
01				0.001					
01				<0.001		20	270		
01	0.009	0.015	2.7	0.036	<0.001			2.60	<0.200
07	<0.005	0.005	0.60	0.011	<0.001	<3	1		
07	<0.005	0.004	0.80	0.001	<0.001	<3	1		
07	<0.005	0.002	0.70	<0.001	<0.001	<3	<1		
07	<0.005	0.004	0.60	0.013	<0.001	<3 <3	1 <1		
07 07	<0.005 0.007	0.002 0.002	0.70 0.70	<0.001 <0.001	<0.001 <0.001	<3	1		
15	0.007	0.002	0.70	0.004	~0.001		1		
15				0.004		<3	13		
15				0.001			13		
15				0.005					
15				0.007					
15				0.008		11	190		
15	0.051	0.042	0.70	0.034	<0.001				
29				0.013					
29						<3	8		
29				0.005					,
29				0.010					
29				0.012		5	150		
29	0.059	0.010	0.60	0.021	<0.001				
SEP									
12				0.011			,		
12 12				0.010		13	4		
12				0.010					
12				0.013					
12				0.033		14	950		
12	0.028	0.027	0.60	0.011	<0.001				
26				0.011					
26						21	42		
26				0.012					
26				0.010					
26				0.009					
26				0.010		17	20		
26	0.010	0.061	0.80	0.011	<0.001				

05206000 LEECH LAKE AT FEDERAL DAM, MN

LOCATION.--Lat 47°12'23", long 94°18'31", in lot 2, sec.14, T.143 N., R.29 W., Cass County, Hydrologic Unit 07010102, on Leech Lake Indian Reservation, at head of Leech Lake River on Waboose Bay, 5 mi southwest of town of Federal Dam.

DRAINAGE AREA. -- 1.163 mi².

PERIOD OF RECORD. --April 1884 to current year. Monthend contents only for some periods, published in WSP 1308. Prior to October 1956, published as "Leech Lake Reservoir."

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Dec. 31, 1884, nonrecording gage 0.5 mi north of outlet to Leech Lake River at datum 98.47 ft higher. Dec. 31, 1884, to May 24, 1931, nonrecording gage 0.5 mi north of outlet to Leech Lake River and May 25, 1931, to July 10, 1973, water-stage recorder at same site and at datum 92.70 ft higher.

REMARKS .--Reservoir is formed by Leech Lake and several other natural lakes controlled by concrete and timber dam; storage began in 1884; original timber structure completed in 1884, replaced by present dam in 1902. Capacity between elevation 1,292.70 ft and 1,297.94 ft (maximum allowable range) is 688,985 acre-ft of which 352,637 acre-ft is controlled storage between elevations 1,292.70 ft and 1,295.70 ft (normal operating range). Contents shown herein are contents above elevation 1,290.00 ft. Prior to September 1978, published contents as contents above elevation 1,292.20 ft. Water is used to benefit navigation on Mississippi River below Minneapolis.

COOPERATION. -- Records were provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD. --Maximum contents observed, 734,300 acre-ft, capacity table then in use, June 30, 1916, elevation, 1,297.88 ft; minimum, 51,380 acre-ft, capacity table then in use, Dec. 8, 24, 1976, elevation, 1,292.69 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 633,100 acre-ft, May 29, elevation, 1,295.09 ft; minimum, 464,810 acre-ft, Nov. 26, elevation, 1,293.73 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1990 to SEPTEMBER 1991

	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	. 30	1,293.98	492,880	
Oct.	31	1,293.97	491,680	-1,200
Nov.	30	1,293.75	466,990	-24,690
Dec.	31	1,293.81	473,520	+6,530
CAL	YR 1990			-15,720
Jan.	31	1,293.91	484,520	+11,000
Feb.	28	1,294.01	496,540	+12,010
Mar.	31	1,294.24	525,620	+29,090
Apr.	30	1,294.55	564,830	+39,210
May	31	1,295.05	628,050	+63,220
June	30	1,294.72	586,310	-41,740
July	31	1,294.75	590,110	+3,800
Aug.	31	1,294.36	540,790	-49,320
Sept.	. 30	1,294.54	563,560	+22,780
WTR	R YR 1991		I	+70,690

05206500 LEECH LAKE RIVER AT FEDERAL DAM, MN

LOCATION.--Lat 47°14'45", long 94°13'12", in sec.34, T.144 N., R.28 W., Cass County, Hydrologic Unit 07010102, on Leech Lake Indian Reservation, on right bank at dam on Leech Lake River at city of Federal Dam, 2 mi downstream from natural outlet of Leech Lake.

DRAINAGE AREA. -- 1, 163 mi².

PERIOD OF RECORD. -- May 1884 to current year. Monthly discharge only for some periods, published in WSP 1308.

GAGE. --Water-stage recorder, headwater gage, and nonrecording tailwater gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U. S. Army Corps of Engineers). Prior to June 30, 1973, gages (nonrecording headwater gage prior to July 3, 1948) at same sites with datum at 1,293.23 ft, adjustment of 1912. May 27 to Nov. 30, 1929, nonrecording gage at site 600 ft downstream at different datum.

REMARKS.--Discharge computed on basis of modified weir formula, the head being obtained from readings on tailwater gage and mean gage height from recording headwater gage. Flow completely regulated by Leech Lake (station 05206000).

COOPERATION .-- Computations of daily discharge were provided by U.S. Army Corps of Engineers.

AVERAGE DISCHARGE (unadjusted).--107 years, 370 ft3/s, 4.32 in/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 2,520 ft³/s, June 7, 1957 (result of dam failure); no flow at times.

EXTREMES FOR CURRENT YEAR. -- Maximum daily discharge, 607 ft3/s, Oct. 27; minimum daily, 96 ft3/s, April 27.

		DISCHARGE	, CUBI	C FEET PER	SECOND, W	VATER MEAN	YEAR OCTOE VALUES	BER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	306	594	192	146	102	104		118	414	192	207	144
2	294	594	192	146	102	104		115	414	178	198	144
3	312	594	192	146	102	104	113	104	397	170	229	144
4	318	594	143	146	102	104	113	116	380	173	229	144
5	306	594	143	146	102	104	113	118	397	173	229	132
6	392	594	143	146	102	104	113	119	397	170	221	138
7	392	594	143	146	102	104		119	397	170	221	144
8	392	594	143	146	102	104		119	397	170	221	144
š	392	594	143	146	102	104	113	231	397	216	252	155
10	392	594	143	146	102	104		310	397	216	247	148
	200	504	• • •	110	100	101		245	207	016	047	140
11	392	594	143	146	102	104		345	397	216	247	148
12	392	594	146	100	102	104		345	380	216	247	148
13	392	581	146	100	102	104		360	380	216	252	149
14	392	483	143	100	104	104		360	345	216	221	149
15	392	472	143	100	104	104	122	397	327	216	243	149
16	392	472	143	100	104	104	122	397	327	216	220	162
17	376	473	146	100	104	104		380	327	216	224	155
18	394	473	140	102	104	104		380	314	216	224	162
19	494	473	140	102	104	104		380	276	216	224	155
20	494	376	143	102	104	104		397	276	216	224	198
21	494	294	143	102	104	104	122	397	216	216	224	198
22	494	300	143	102	104	104		380	216	216	224	216
23	594	300	143	102	104	113		397	216	216	224	198
23 24	594 594	294	143	102	104	113		414	216	207	206	192
			143									198
25	594	294	143	102	104	113	128	414	216	207	206	190
26	594	294	143	102	104	113	122	414	216	207	206	192
27	607	245	143	102	104	113	96	414	192	207	176	192
28	594	250	143	102	104	113	103	414	180	207	176	192
29	594	250	146	102		113	103	397	180	207	144	183
30	594	250	146	102		113	118	414	180	207	144	192
31	594		146	102		113		397		180	144	
TOTAL	13953	13702	4592	3634	2886	3305	3490	9662	9364	6265	6654	4965
MEAN	450		148	117	103	107	116	312	312	202	215	165
MAX	607	594	192	146	104	113	128	414	414	216	252	216
MIN	294	245	140	100	102	104	96	104	180	170	144	132
AC-FT	27680	27180	9110	7210	5720	6560	6920	19160	18570	12430	13200	9850
CFSM	.39	.39	. 13	. 10	.09	.09	.10	. 27	. 27	. 17	.18	. 14
IN.	.45	.44	. 15	.12	.09	. 11		.31	.30	. 20	. 21	. 16
SUMMARY	STATIST	ICS	FOR	.12 1990 CALEN	DAR YEAR		FOR 1991	WATER YEAR				
ANNUAL	TOTAL			104438.0			82472					
ANNUAL	MEAN			286			226					
HIGHEST	ANNUAL I	MEAN										
LOWEST	ANNUAL M	EAN										
HIGHEST	DAILY M	EAN		840 92 93 207200	Jun 26		607	Oct 27				
	DAILY ME	AN		92	Aug 11		96	Apr 27				
ANNUAL.	SEVEN-DA	Y MINIMUM		93	Aug 10		100	.Ten 12				
ANNUAL	RUNOFF (AC-FT)		207200	•		163600					
ANNUAL.	RUNOFF (CFSM)		. 25				. 19				
ANNIIAI	RUNOFF (3.34			2.	.64				
10 PERC	ENT EXCE	EDS		594			414					
	ENT EXCE			192			173					
	ENT EXCE			104			104					
		_		- - -								

MISSISSIPPI RIVER MAIN STEM

05210500 POKEGAMA LAKE NEAR GRAND RAPIDS, MIN

LOCATION.--Lat 47°10'00", long 93°33'20", in NWk sec.17, T.54 N., R.25 W., Itasca County, Hydrologic Unit 07010101, at narrows on U.S. Highway 169, 4 mi south of Grand Rapids and at mile 1,184 upstream from Ohio River.

DRAINAGE AREA. -- 3, 265 mi².

PERIOD OF RECORD. --April 1884 to current year. Prior to October 1941 monthend contents only, published in WSP 1308. Published as Pokegama Reservoir near Grand Rapids, October 1941 to September 1956.

REVISED RECORDS .-- WSP 1914: 1897(M).

GAGE,--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to May 30, 1949, nonrecording gage at Pooles Arm of Pokegama Lake 5 mi northwest, and May 31, 1949, to July 12, 1973, water-stage recorder at same site and at datum 64.42 ft higher.

REMARKS.--Reservoir is formed by Pokegama Lake and several other natural lakes controlled by concrete dam; storage began in 1884; original timber dam completed in 1884, replaced by present structure in 1888-89. Capacity between elevation 1,270.42 ft and 1,276.42 ft (maximum allowable range) is 80,126 acre-ft of which 52,483 acre-ft is controlled storage between elevations 1,270.42 ft and 1,274.42 ft (normal operating range). Contents shown herein are contents above elevation 1,267.00 ft. Prior to September 1978, published contents as contents above elevation 1,268.92 ft. Water is used to benefit navigation on Mississippi River below Minneapolis.

COOPERATION .-- Records were provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD. --Maximum contents, 132,160 acre-ft, May 23, 1986, elevation, 1,275.28 ft; maximum elevation, 1,277.92 ft, May 8, 1897; minimum contents observed, 4,520 acre-ft, below zero of capacity table then in use, Sept. 30, 1934, elevation, 1,268.54 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 103,050 acre-ft, May 7, elevation, 1,273.73 ft; minimum, 72,810 acre-ft, Dec. 28, elevation, 1,271.71 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	1,273.14	93,670	
Oct. 31	1,272.32	81,500	-12,170
Nov. 30	1,271.80	74,090	-7,410
Dec. 31	1,271.71	72,810	-1,280
CAL YR 1990			-1,000
Jan. 31	1,271.75	73,380	+570
Feb. 28	1,271.80	74,090	+710
Mar. 31	1,272.56	85,010	+10,920
Apr. 30	1,273.53	99,700	+14,690
May 31	1,273.53	99,700	0
June 30	1,273.32	96,360	-3,340
July 31	1,273.28	95,770	-590
Aug. 31	1,273.35	96,810	+1,040
Sept. 30	1,273.36	96,960	+150
WTR YR 1991			+3,290

MISSISSIPPI RIVER MAIN STEM

05211000 MISSISSIPPI RIVER AT GRAND RAPIDS, MN

LOCATION.--Lat 47°13'56", long 93°31'48", in SWkNWk sec.21, T.55 N., R.25 W., Itasca County, Hydrologic Unit 07010103, on left bank, in super-calendar room of Blandin Paper Mill in Grand Rapids, 400 ft downstream from Blandin Dam, 400 ft upstream from bridge on U.S. Highway 169, 2.5 mi upstream from Prairie River, and at mile 1,182 upstream from Objo River.

DRAINAGE AREA.--3,370 mi², approximately.

PERIOD OF RECORD.--October 1883 to current year. Monthly discharge only for some periods, published in WSP 1308.

Published as "at Pokegama Dam near Grand Rapids" 1942-44.

GAGE.--Water-stage recorder. Datum of gage is 1,242.03 ft above National Geodetic Vertical Datum of 1929. See WSP 1914 for history of changes prior to Jan. 17, 1951.

REMARKS.--Records fair. Flow regulated by Winnibigoshish Lake (station 05201000), Leech Lake (station 05206000), Pokegama Lake (station 05210500) and occasionally at low flow by powerplant at Blandin Dam. Backwater from Prairie River occurs at times in most years.

		DISCHAR	GE, CUBI	C FEET PER			YEAR OCTOB	ER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	553 530 788 859 935	1120 1220 1340 1320 1320	474 512 492 575 495	438 430 413 416 438	395 410 428 398 426	403 435 417 427 419	467 464 462	923 1110 881 728 726	838 853 888 813 826	526 441 510 483 441	363 371 361 399 416	584 575 499 361 365
6 7 8 9	983 954 971 959 959	1290 1290 1250 1210 1200	515 522 506 520 517	409 420 405 407 414	426 404 415 439 400	421 428 413 424 417	483 479 458	726 1180 1430 1510 1500	852 848 867 874 893	478 485 459 472 453	509 480 477 499 474	392 416 409 391 387
11 12 13 14 15	953 983 1040 1020 1050	1250 1210 1230 1200 1250	506 524 499 517 509	440 420 403 417 419	423 424 419 419 432	428 434 402 424 426	460 474 493	1390 1480 1360 1060 1070	914 910 981 1010 1050	479 447 439 454 458	490 423 409 400 514	389 375 408 341 394
16 17 18 19 20	1140 1290 1340 1470 1650	1210 1210 1210 1080 1020	504 484 489 453 493	402 415 423 408 415	415 414 419 433 415	409 437 414 414 439	655 612 660	1030 1050 1040 1050 902	989 976 997 1010 1000	449 448 466 467 472	565 732 714 594 532	484 525 585 546 569
21 22 23 24 25	1540 1530 1380 1330 1390	1030 991 923 832 812	467 478 453 474 475	418 414 428 403 418	422 419 421 418 431	421 435 470 428 439	579 512 504	717 718 705 702 678	1040 935 945 711 542	442 488 448 474 427	553 481 471 492 464	557 570 498 492 510
26 27 28 29 30 31	1240 1240 1310 1190 1070 1120	672 597 589 599 614	471 450 400 454 417 417	419 417 416 408 409 434	416 416 435	462 448 456 455 452 461	453 406 465 599	722 693 655 717 711 773	543 523 530 476 489	502 424 504 362 401 355	513 605 610 570 580 639	478 503 507 512 548
TOTAL MEAN MAX MIN AC-FT CFSM IN.	34767 1122 1650 530 68960 .33 .38	32089 1070 1340 589 63650 .32 .35	15062 486 575 400 29880 .14 .17	12936 417 440 402 25660 .12 .14	11732 419 439 395 23270 .12 .13	13358 431 470 402 26500 .13 .15	513 660 403 30510 .15	29937 966 1510 655 59380 .29 .33	25123 837 1050 476 49830 .25 .28	14154 457 526 355 28070 .14 .16	15700 506 732 361 31140 .15	14170 472 585 341 28110 .14
STATIST MEAN MAX (WY) MIN (WY)	TICS OF 1406 2865 1986 187 1977 STATIS	MONTHLY MEAI 1550 2496 1954 174 1977	N DATA FO 1445 2375 1954 186 1977		EARS 1942 1482 2729 1945 177 1977	- 199 1393 2762 1945 198 1977	1, BY WATES 1205 3442 1945 247 1959	R YEAR (WY) 1289 3026 1979 32.5 1949 WATER YEAR	1328 3271 1962 206 1988	1360 3363 1962 125 1961 ATER YEARS	1236 3711 1950 98.3 1961	1228 3542 1950 195 1976
ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL	MEAN ANNUAL DAILY DAILY MEVEN-D ANEOUS ANEOUS RUNOFF	MEAN MEAN EAN AY MINIMUM PEAK FLOW PEAK STAGE LOW FLOW (AC-FT)		1760 188 226 2040 6.37 53	Jun 25 Apr 21 Apr 20 Jul 5 Jul 5 Aug 13		1650 341 373 1900 6.5 57 465000	Oct 20 Sep 14 Jul 29 May 10 90 May 10 Jan 8	1	1373a 2265 277 5250 .00 24 2500b 15.20c	Oct May Sep	1950 1977 5,8,1905 2 1948 3 1949 3 1948 3 1948
ANNUAL 10 PERC 50 PERC	RUNOFF RUNOFF ENT EXC ENT EXC ENT EXC	(INCHES) EEDS EEDS		.24 3.23 1340 750 358			2.5 1180 492 409	59		.41 5.54 2320 1380 335		

a Average based on 108 years of record is 1,185 $\rm ft^3/s$; median is 1,060 $\rm ft^3/s$. From rating curve extended above 4,500 $\rm ft^3/s$. c From floodmark, caused by dam failure.

SANDY RIVER BASIN

05218500 SANDY LAKE AT LIBBY, MN

LOCATION.--Lat 46°47'20", long 93°19'10", in sec.25, T.50 N., R.24 W., Aitkin County, Hydrologic Unit 07010103, on dam on Sandy River at Libby, 1.2 mi upstream from mouth, and 14 mi north of McGregor.

DRAINAGE AREA . -- 421 mi2.

PERIOD OF RECORD.--July to December 1893, October to December 1894, July 1895 to current year. Monthend contents only for some periods, published in WSP 1308. Published as Sandy Lake Reservoir at Libby, October 1941 to September 1956.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Sept. 23, 1949, nonrecording gage and Sept. 24, 1949, to Nov. 28, 1962, water-stage recorder at site 1 mi upstream at datum 1,207.71 ft, adjustment of 1912. Nov. 29, 1962, to June 30, 1973, water-stage recorder at present site at datum 1,207.71 ft, adjustment of 1912.

REMARKS.--Lake is formed by concrete dam which controls Sandy, Flowage, Snake, and Aitkin Lakes. Storage began in 1893; original timber crib dam completed in 1895, replaced by present structure in 1911. Capacity between elevation 1,214.31 ft and 1,221.31 ft (top of structure) is 73,037 acre-ft, of which 37,539 acre-ft is controlled storage between elevations 1,214.31 ft and 1,218.31 ft (normal operating range). Contents shown herein are contents above elevation 1,207.00 ft. Frior to September 1978, published contents as contents above elevation 1,209.03 ft. Water is used to benefit navigation on Mississippi River below Minneapolis.

COOPERATION. -- Records were provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD. --Maximum contents, 167,200 acre-ft, capacity table then in use, May 19, 1950, elevation, 1,224.82 ft; minimum observed, 5,950 acre-ft, below zero of capacity table then in use, Jan. 20, 1921, elevation, 1,207.96 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 68,940 acre-ft, May 12, elevation, 1,217.04 ft; minimum, 45,600 acre-ft, Feb. 4, elevation, 1,214.46 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	1,216.44	63,150	
Oct.	31	1,216.55	64,200	+1,050
Nov.	30	1,215.46	54,160	-10,040
Dec.	31	1,214.01	49,390	-4,770
CAL	YR 1990			-850
Jan.	31	1,214.50	45,940	-3,450
Feb.	28	1,214.57	46,520	+580
Mar.	31	1,215.68	56,130	+9,610
Apr.	30	1,216.32	62,010	+5,880
May	31	1,216.52	63,910	+1,910
June	30	1,216.69	65,530	+1,610
July	31	1,216.43	63,060	-2,470
Aug.	31	1,216.41	62,870	-190
Sept.	30	1,216.31	61,910	-960
WTR	YR 1991			-1,240

SANDY RIVER BASIN

05219000 SANDY RIVER AT SANDY LAKE DAM, AT LIBBY, MN

LOCATION.--Lat 46°47'20", long 93°19'10", in sec.25, T.50 N., R.24 W., Aitkin County, Hydrologic Unit 07010103, at dam at outlet of Sandy Lake, at Libby, 1.2 mi above mouth, and 14 mi north of McGregor.

DRAINAGE AREA. -- 421 mi².

PERIOD OF RECORD.--July 1893 to March 1894, July 1894, November 1894 to March 1895, August 1895 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as "below Sandy Lake Reservoir" 1893-1916.

GAGE.--Water-stage recorders on headwater and tailwater. Datum of gages is National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to June 30, 1973, gages (nonrecording gages prior to June 20, 1949) at same site with datum at 1,207.71 ft, adjustment of 1912.

REMARKS.--Discharge computed on basis of head over dam, using modified weir formula, head being obtained from headwater and tailwater recorder records. Flow completely regulated by Sandy Lake (station 05218500).

COOPERATION, -- Computations of daily discharge were provided by U.S. Army Corps of Engineers; discharge measurements made and records reviewed by Geological Survey.

AVERAGE DISCHARGE (unadjusted).--96 years (water years 1896-1991), 225 ft³/s, 7.26 in/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 3,740 ft3/s, July 12, 1897; no flow at times.

EXTREMES FOR CURRENT YEAR .--Maximum daily discharge 1 820 ft3/s Sant 14. minimum daily 44 ft3/s Mar 28

EXTREMES	FOR CUR	RENT YEAR.	Maximum	daily d	ischarge,	1,820	ft ³ /s, Sep	ot 14; minim	um daily,	44 ft ³ /s	Mar.	28.
		DISCHAR	GE, CUBIC	FEET PE	R SECOND, DAILY	WATER MEAN	YEAR OCTOE VALUES	BER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	170	984	250	209	85	47		704	1500	930	1100	264
2	170	972	245	209	84	47	214	680	1480	1330	1090	264
3	170	804	243	209	84	47		664	1460	1270	760	264
4	165	804	248	209	84	47		640	1460	1270	784	264
5	258	784	250	209	84	47	320	624	1460	1260	784	264
6	242	514	248	209	47	47	512	600	1460	1580	566	264
7	240	516	248	207	47	48		1420	1110	1400	515	264
8	242	522	248	207	47	48		1180	1160	1160	420	256
9	245	522	248	207	47	49		1150	1160	880	371	250
10	248	522	248	204	47	49	651	1150	1160	744	209	873
11	248	522	248	124	47	48	801	1150	712	582	114	1420
12	152	522	248	124	47	48		1100	558	588	115	1800
13	155	522	248	124	48	47		1150	570	582	116	1800
14	155	522	245	122	47	47		1180	297	582	93	1820
15	153	522	248	122	47	47	801	1220	303	588	94	1780
16	102	312	250	122	47	48	783	1250	303	930	59	1750
17	102	319	245	122	48	48	984	928	303	910	59	1150
18	100	319	245	122	48	48		992	255	713	59	1190
19	188	322	245	122	47	48		1020	260	728	59	1190
20	180	322	248	122	47	48	747	1040	159	728	157	744
21	174	322	248	122	47	48	738	592	161	855	145	768
22	170	326	245	122	47	48		336	510	855	148	768
23	410	326	243	122	47	47		360	500	940	148	768
24	560	326	240	122	47	47		372	500	990	115	408
25	574	329	238	121	48	47	756	376	505	1110	226	420
26	809	336	235	121	47	45		744	510	594	224	420
27	800	250	235	121	47	45		736	520	812	269	420
28	809	250	233	121	47	44		1190	701	612	269	424
29	819	250	233	83		103		1160	721	1130	266	424
30	984	250	235	85		106		1600	960	837	266	424
31	972		235	85		112		1520		1120	266	
TOTAL	10766	14113	7566	4530	1506	1645		28828	22718	28410	9866	23115
MEAN	347	470	244	146	53.8	53.1		930	757	916	318	770
MAX	984	984	250	209	85	112		1600	1500	1580	1100	1820
MIN	100	250	233	83	47	44	112	336	159	582	59	250
AC-FT	21350	27990	15010	8990	2990	3260		57180	45060	56350	19570	45850
CFSM	. 82	1.12	. 58	. 35	. 13	. 13	1.51	2.21	1.80	2.18	.76	1.83
IN.	. 95	1.25	.67	. 40	.13	.15	1.69	2.55	2.01	2.51	. 87	2.04
SUMMARY	STATIST	CICS			NDAR YEAR			WATER YEAR				
ANNUAL	TOTAL			106838.0			172189					
ANNUAL				293			472					
	ANNUAL											
LOWEST	ANNUAL M	ilan					40					
HIGHEST	DAILY N	ilan Man		1900	Jun 3		1820	Sep 14				
	DAILY ME			15	Sep 8		44	Mar 28				
ANNUAL	olven-da	Y MINIMUM		18 211900	Sep 5		46 341500	Mar 22				
ANNINAL	RUNOFF (CECMY		211900 .7	0			. 12				
AMMUAL .	DIMOPP (CIONI		9.4	6			. 12 . 21				
ANNUAL ANNUAL 10 PERC	ENT EVCE	THOUS		827	7		1150					
50 PERC	ENT EXCE	FDS		170			266					
	ENT EXC			20			48					
30 ILNO	DACE			20			40					

MISSISSIPPI RIVER MAIN STEM

05227500 MISSISSIPPI RIVER AT AITKIN, MN

LOCATION.--Let 46°32'26", long 93°42'26", in SWkNWk sec.24, T.47 N., R.27 W., Aitkin County, Hydrologic Unit 07010104, on right bank upstream side of highway bridge at north edge of Aitkin, 1 mi downstream from Ripple River and at mile 1,055. 9 upstream from Ohio River.

DRAINAGE AREA.--6,140 mi², approximately.

PERIOD OF RECORD.--March 1945 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,182.41 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Mar. 1, 1945, to Mar. 14, 1961, nonrecording gage, and Mar. 15, 1961, to Sept. 30, 1967, water-stage recorder at same site at datum 3.0 ft higher. Diversion channel: Non-recording gage and crest-stage gage. Datum of gage is 1,182.02 ft above National Geodetic Vertical Datum of 1929.

Apr. 9, 1955, to Apr. 10, 1956, nonrecording gage at site 4 mi downstream at different datum. Apr. 11, 1956, to Sept. 30, 1967, non-recording gage at same site at datum 3.0 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by Winnibigoshish Lake (sta 05201000), Leech Lake (sta 05206000), Pokegama Lake (sta 05210500), and Sandy Lake (sta 05218500). Water diverted at medium and high stages into Aitkin diversion channel 6.5 mi above station, bypasses station and returns to river 15.5 mi below station. Diversion began Apr. 2, 1955. These records include flow in diversion channel. Gage height telemeter and U.S. Army Corps of Engineers satellite telemeter at station.

at station.

DISCUADOR CUDIO PERO DED CECONO MATER VEAD OCTOBER 1000 TO CERTEMPER 1001

EXTREMES FOR CURRENT YEAR. --River gage: Maximum discharge, 4,620 ft³/s, May 11, 12, gage height, 11.95 ft. Diversion channel: Maximum discharge, 2,890 ft³/s, May 11, 12, gage height, 11.45 ft.

		DISCHAR	GE, CUB	SIC FEET P	ER SECOND, I	WATER	YEAR OCTOBE VALUES	ER 1990 TO	SEPTEMBE	R 1991		
					DAILI	(IIIII	VALUED .					
DAY	OCT	NOA	DEC	JAN	FEB	MAR		MAY	JUN	JUL	AUG	SEP
1	1060	3280	e1300	e910	e790	e780		3470	4050	2720	2050	1130
2 3	1040	3170	e1250	e910	e790	e780		3680	4180	3160	1950	1120
4	1140 1230	3100 3030	e1250 e1200	e900 e900	e790 e790	e780		3830 4170	4300 4300	3440 3550	1830 1650	1160 1140
5	1480	3020	e1200	e890	e790	e780 e780		4550	4210	3610	1560	1100
6	1850	2970	e1200	e880	e780	e780		5270	4020	3690	1480	1050
ž	2050	2790	e1150	e870	e780	e780		6360	3750	3710	1360	1020
8	2090	2600	e1150	e860	e780	e780		7090	3420	3510	1290	1260
9	2050	2500	e1150	e860	e780	e7.80		7300	3220	3190	1240	1900
10	1950	2440	e1150	e850	e780	e780	3020	7370	3090	2880	1190	2450
11	1890	2420	e1150	e850	e780	e780		7420	2860	2570	1100	2780
12	1860	2380	e1100	e840	e780	e780	3210	7430	2600	2430	1030	3030
13	1790	2340	e1100	e840	e780	e780		7380	2460	2490	975	3200
14 15	1750 1710	2330 2340	e1100 e1100	e830 e820	e780 e780	e780 e780		7200 6960	2370 2250	2570 2520	939 893	3170
16	1700	2300	e1100	e810	e780	e800		6630	2190	2440	849	3110 3100
17	1730	2210	e1100	e800	e780	e800		6180	2140	2440	807	2860
18	1870	2170	e1050	e800	e780	e850		5700	2060	2390	825	2490
19	2160	2130	e1050	e800	e780	e900		5330	1970	2300	928	2390
20	2580	2100	e1050	e800	e780	e950		4970	1890	2260	1060	2320
21 22	2970	2090	e1050	e800	e780	e1000	4060	4540	1860	2310	1140	2170
22	3260	2040	e1000	e800	e780	e1100	3940	3960	1930	2300	1130	2090
23 24	3510	1980	e1000	e800	e780	e1200		3490	2140	2250	1050	2010
24	3650	1910	e1000	e800	e780	e1500		3500	2220	2160	1010	1860
25 26	3670 e3600	1800 1500	e1000 e980	e800 e800	e780 e780	e1800		3460 3360	2170 2100	2090 1950	1030 1060	1690 1570
27	e3550	1380	e960	e800	e780	e2100 e2400		3370	2180	1760	1070	1500
28	e3500	e1350	e950	e790	e780	e2600		3560	2220	1720	1050	1490
29	e3450	e1350	e940	e790		e2700		3730	2210	1850	1050	1470
30	3380	e1300	e920	e790		e2800		3740	2290	2050	1120	1470
31	3370		e920	e790		e2900		3840		2080	1150	
TOTAL	72890	68320	33620	25780	21890	38100	101290	158840	82650	80390	36866	59100
MEAN	2351	2277	1085	832	782	1229		5124	2755	2593	1189	1970
MAX	3670	3280	1300	910	790	2900		7430	4300	3710	2050	3200
MIN	1040	1300	920	790	780	780		3360	1860	1720	807	1020
AC-FT	144600	135500	66690	51130	43420	75570		315100	163900	159500	73120	117200
CFSM IN.	.38 .44	.37	.18 .20	.14	.13	.20		.83 .96	. 45 . 50	.42	.19	.32
IN.	TTCC OF	.41 MONTHLY MEA	UZ.	EUD MYLED	.13	.23	.61	. VEAD (UV)	. 50	.49	. 22	.36
MEAN	2598	2646	2167	1899	1825	2191	5157	5312	3735	2845	2279	2212
						5415		15510	8072	7134	8270	6689
(WY)	1966	1972	1972	1966	1966	1945		1950	1965	1975	1953	1986
MIN	313	328	324	345	398	638	1074	669	539	346	273	321
(WY)	1977	1977	1977	1977	1977	1977	1977	1958	1988	1961	1961	1976
SUMMAR	Y STATIS	STICS	FOR	1990 CAL	1977 ENDAR YEAR		FOR 1991 W	VATER YEAR	1	WATER	YEARS 1945	5 - 1991
ANNUAL	TOTAL			790547			779736					
ANNUAL	MEAN TANNIA	MEAN		2165			2131			2895 4985		1966
TOWEST	ANNUAL	MFAN								796		1977
HIGHES	T DATEY	MEAN		6660	May 5		7430	May 12		19900	Mav	20 1950
LOWEST	DAILY	ÆAN.		462	May 5 Aug 22 Aug 20 May 5 20a May 5		780	Feb 6		153		1 1961
ANNUAL	SEVEN-I	MUMINIM YA		499	Aug 20		780	Feb 6		195		26 1961
INSTAN	TANEOUS	PEAK FLOW		6680	May 5		7430	May 11.	12	20000		20 1959
INSTAN	TANEOUS	PEAK STAGE		11.	20a May 5		11.9	5 May 11,	12	22.	49b May	20 1959
INSTAN	TANEOUS	LOW FLOW		459	Aug 22					151	Sep	1 1961
ANNUAL	RUNOFF	(AC-FT)		1568000			1543000			2097000		
ANNUAL	KUNOFF	(CFSM)		. •	35		, .3	35			47	
ANNUAL	KUNUFF	(INCHES)		٨٨٥٨.	78		4.7 3740	2		5850	41	
10 PER	CENT EXC	たたりら こととりら		4090 1710			3740 1890			2280		
90 PER	CENT EXC	6756 1972 328 1977 STICS MEAN MEAN MEAN MEAN MEAN DAY MINIMUM PEAK FLOW PEAK STAGE LOW FLOW (AC-FT) (CFSM) (INCHES) CEEDS CEEDS		900			780	35 72		922		
				300			, 00			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

a From observer reading.

Present datum.

Estimated.

PINE RIVER BASIN

05230500 PINE RIVER RESERVOIR AT CROSS LAKE, MN

LOCATION.--Lat 46°40'09", long 94°06'44", in SWkNWk sec.21, T.137 N., R.27 W., Crow Wing County, Hydrologic Unit 07010105, at dam on Pine River, at outlet of Cross Lake at city of Cross Lake.

DRAINAGE AREA -- 562 m/2

PERIOD OF RECORD. -- March 1886 to current year. Monthend contents only for some periods, published in WSP 1308.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to May 3, 1949, nonrecording gage at same site and datum.

REMARKS. --Reservoir is formed by Trout, Whitefish, Rush, and Cross Lakes and several other natural lakes controlled by timber crib dams; storage began in 1886; dam completed in 1886. Capacity between elevations 1,226.32 ft and 1,234.82 ft (maximum allowable range) is 118,703 acre-ft of which 53,272 acre-ft is controlled storage between elevations 1,226.32 ft and 1,230.32 ft (normal operating range). Contents shown herein are contents above an elevation 1,216.00 ft. Prior to September 1978, published contents as contents above elevation 1,218.67 ft. Water is used to benefit navigation on Mississippi River below Minneapolis.

COOPERATION .-- Records were provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 173,600 acre-ft, capacity table then in use, July 10, 1916, elevation, 1,234.56 ft; minimum observed, 1,310 acre-ft, below zero of capacity table then in use, Aug. 20, 1918, elevation, 1,217.67 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 105,850 acre-ft, May 7, elevation, 1,229.65 ft; minimum, 93,100 acre-ft, Feb. 8, elevation, 1,228.71 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	1,229.13	98,760	
Oct.	31	1,229.11	98,500	-260
Nov.	30	1,228.72	93,240	-5,260
Dec.	31	1,228.79	94,170	930
CAL	YR 1990			+4,500
Jan.	31	1,228.73	93,370	-800
Feb.	28	1,228.83	94,710	1,340
Mar.	31	1,229.20	99,710	5,000
Apr.	30	1,229.57	104,760	5,050
May	31	1,229.33	101,490	-3,270
June	30	1,229.45	103,120	1,630
July	31	1,229.38	102,170	-950
Aug.	31	1,229.27	100,670	-1,500
Sept.	30	1,229.25	100,390	-280
WTR	YR 1991			+1,630

PINE RIVER BASIN

05231000 PINE RIVER AT CROSS LAKE DAM, AT CROSS LAKE, MN

LOCATION.--Lat 46°40'09", long 94°06'44", in SW\NW\x sec.21, T.137 N., R.27 W., Crow Wing County, Hydrologic Unit 07010105, at dam at outlet of Cross Lake at city of Cross Lake.

DRAINAGE AREA. -- 562 mi².

PERIOD OF RECORD. --April 1886 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as "below Pine River Reservoir" 1895-1916, 1929, and as "at Pine River Dam, at Cross Lake" 1941-56.

GAGE. --Water-stage recorder, headwater gage, and nonrecording tailwater gage. Datum of gages is 1,216.32 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Mar. 26, 1886, to May 31, 1929, nonrecording gages on headwater and tail water at same sites and datum. June 1 to Nov. 30, 1929, nonrecording gage in tailwater at datum 1.60 ft (0.49 m) lower. Dec. 1, 1929, to May 2, 1949, nonrecording gage on headwater and Dec. 1, 1929, to August 1949, nonrecording gage on tailwater at present sites and datum.

REMARKS.--Discharge computed principally on basis of modified weir formula, the head being obtained from twice-daily readings on tailwater gage and from headwater recorder. Flow completely regulated by Pine River Reservoir (station 05230500).

COOPERATION. -- Computations of daily discharge were provided by U. S. Army Corps of Engineers.

AVERAGE DISCHARGE (unadjusted). -- 105 years, 220 ft3/s, 5.32 in/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum daily discharge, 2,250 ft³/s, in June 1896 (does not include flow bypassing dam through crevasse); no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 900 ft³/s, May 8-15; minimum daily, 30 ft³/s, June 23-27, Aug. 7 to Sept. 19.

	, oo bopu	. 10.										
		DISCHARG	E, CUBIC	C FEET PER		VATER Y MEAN V		ER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	100	200	150	120	120	90	225	650	300	190	60	30
2	100	200	100	120	120	104	225	650	300	250	51	30
3	100	200	100	120	120	120	225	650	300	250	45	30
4	100	200	100	120	120	120	225 225	550	281	350	45	30
3	100	200	100	120	120	120	225	650	267	350	45	30
3	100	200	100	120	120	120	227	030	207	550	73	50
6	100	200	100	120	120	120	225	650	250	350	37	30
7	100	200	100	120	120	120	225	800	225	350	30	30
8	100	200	100	120	12 0	120	2 25	900	225	350	30	30
9	100	2 00	100	120	·120	120	225	900	225	320	30	30
10	. 100	200	100	120	120	120	225	900	2 25	290	30	30
11	100	200	100	120	120	120	225	900	194	290	30	30
12	100	200	100	120	104	120	225	900	175	275	30	30
13	100	200	100	120	90	120	180	900	134	290	30	30
14	100	200	100	120	90	120	180	900	100	290	30	30
15	100	200	100	120	90	120	180	900	100	290	30	30
16	100	200	100	120	90	120	2 25	700	90	200	30	30
17	100	200	100	120	90	120	225	700	90	200	30	30
18	100	200	100	120	90	120	22 5	700	50	200	30	30
19	125	200	100	120	90	120	276	700	50	170	30	30
20	150	200	100	120	90	120	311	700	50	250	30	50
21	150	200	112	120	90	120	300	553	50	250	30	50
22	150	200	120	120	90	120	300	480	42	250	30	50
23	150	200	120	120	90	120	300	427	30	203	30	50
24	173	200	120	120	90	120	300	400	30	170	30	50
25	200	200	120	120	90	120	300	400	30	170	30	50
23	200	200	120	120	30	120	500	400	50		•	50
26	200	200	120	120	90	175	225	400	30	77	30	50
27	200	200	120	120	90	180	225	400	30	60	30	50
28	200	200	120	120	90	180	225	400	51	60	30	50
29	200	200	120	120		219	225	369	190	60	30	50
30	200	200	120	120		225	225	350	190	60	30	50
31	200		120	120		225		321		60	30	
TOTAL	4098	6000	3362	3720	2864	4158	7127	19800	4304	6925	1033	1120
MEAN	132	200	108	120	102	134	238	639	143	223	33.3	37.3
MAX	200	200	150	120	120	225	311	900	300	350	60	50
MIN	100	200	100	_120	90	90	180	321	30	60	30	30
AC-FT	8130	11900	6670	7380	5680	8250	14140	39270	8540	13740	2050	2220
CFSM	. 24	.36	. 19	. 21	.18	. 24	. 42	1.14	. 26	.40	.06	.07
IN.	27	.40	. 22	.25 1990 CALEN 71329.0	. 19	.28	.47	1.31	.28	. 46	.07	.07
SUMMARY	STATISTI	CS	FOR .	1990 CALER	DAR YEAR		FOR 1991 (WATER YEAR				
ANNUAL !	TOTAL			/1329.0			64511					
ANNUAL I	MLAN	T 4 37		195			177					
HIGHEST	ANNUAL M	LAN										
LUMEST	ANNUAL ME	AN		000	A 00		000	Mars C				
UTCUESI	DAILY MEA	M M		800	Apr 29 Jun 30		900 30	May 8 Jun 23				
A STREET C	PRITTIN _ PLAY	MINITMIN		30 30	Jun 30 Jun 30		30	Aug 7				
MINITAL 1	SEVENTUAL	C-たよ/ いていていかい		141500	Jun 30		128000	vag /				
ANNUAL I	RUMUEE (A	DGM)		747200			128000	31				
ANNUAL I	RUNOFF (A RUNOFF (C RUNOFF (I ENT EXCEE	ncheg /		30 141500 .35 4.72			4.	27				
THE PERCHA	T) TYONGE	uches)		425	•		320	<i>.</i> ,				
בט בבתכו	ENT EXCEE	מק מק		140			120					
	ENT EXCEE			30			30					
ao Erroi	THI BACEE	20		30			30					

05242300 MISSISSIPPI RIVER AT BRAINERD, MN

LOCATION.--Lat 46°22'40", long 94°10'59", in SELSWk sec. 18, T.45 N., R.30 W., Crow Wing County, Hydrologic Unit 07010104, on left bank in hydro-plant of Potlach Corporation, Northwest Paper Division in Brainerd, 12.7 mi upstream from Crow Wing River, and at mile 1003.7 upstream from Ohio River.

DRAINAGE AREA. -- 7,320 mi², approximately.

PERIOD OF RECORD. -- October 1987 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,146.96 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by Winnibigoshish Lake (sta. 05201000), Leech Lake (sta. 05205000), Pokegama Lake (sta. 05210500), Sandy Lake (sta. 05218500), and Pine River Reservoir at Cross Lake (sta 05230500).

		DISCHA	RGE, CUB	IC FEET PER	SECOND,	WATER MEAN	YEAR OCTOI	BER 1990 TO	SEPTEMBER	1991		
DAY	ОСТ	МОЛ	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1160	3700	e1550	1330	1090	1020		4540	4860	3690	2640	1320
2	1100	3900	e1600	1260	1090	1070		4960	5010	4090	2470	1180
3	1460	3660	1540	1150	1080	1020		5230	5220	4500	2370	1550
4	1130	3710	1510	1240	1030	1010		5460	5150	4630	2320	1280
5 6	1710 1610	3720	1600 1580	1230 1220	1010 1030	1090 1090		6170 7020	5060 47 6 0	4640 4680	2040 2030	1540 1210
7	2090	3540 3710	1500	1210	1090	1010	3400	8050	4630	4700	1780	1390
8	2260	3460	1550	1060	1080	988		8750	4200	4700	1490	1550
ğ	2310	3200	1650	1110	1050	1010		9120	3830	4580	1530	1830
10	2190	3130	1500	1180	1030	995		9360	3730	4170	1460	2360
11	2180	2740	1400	1180 1190 1130 1140 1110 1060	1040	980		9470	3450	3560	1260	3050
12	2110	2830	1410	1130	1040	917		9430	3330	3590	1320	3290
13	1940	2840	1480	1140	1040	919		9390	2880	3650	1320	3560
14	1930	2780	1310	1110	1060	1060		9450	2890	3640	1150	3520
15 16	1950 2040	2800 2820	1390 e1300	1100	1090 993	1040 1010	4090 4360	9290 8950	2830 2400	3640 3340	1070 1100	3570 3490
17	2260	2720	e1230	1110	995	1060		8180	2570	3190	1150	3520
18	2200	2540	e1100	1140	976	1100		7520	2480	3100	929	3150
19	2160	2610	e990	1050	981	1100		7110	2370	3270	977	2800
20	2800	2520	e1000	1060	975	1230	5080	6740	2410	2850	1240	2700
21	3270	2460	e1100	1090	1020	1470	4910	6140	2340	2790	1370	2490
22	3520	2420	e1150	1100	1090	1410	4770	5490	2290	2780	1340	2410
23 24	3820 4120	2400 2300	e1200	1130 1200	1080	1340 1610	4600 4550	4880 4630	2390 2580	2840 2740	1330 1270	2530 2220
24 25	4120	2090	1240 1260	1130	1110 983	1620		4450	2430	2740 2580	1350	1950
26	4210	2010	1290	1050	991	2080	4420	4420	2390	2440	1300	1910
27	4040	1570	1390	1040	1080	2490		4240	3030	2350	1430	1570
28	4110	1310	1380	1180	997	2830	3890	4480	2850	2220	1200	1570
29	3910	1300	1340	1130		2880		4460	3050	2210	1230	1670
30 31	4010 3930	1330	1340 1350	1130 1080		2930 3100		4800 4870	3070	2260 2480	1200 1350	1570
TOTAL	81680	82120	42230	35340	29121	44479		207050	100480	105900	46016	67750
MEAN MAX	2635 4210	2737 3900	1362 1650	1140 1330	1040 1110	1435 3100		6679 9470	3349 5220	3416 4700	1484 2640	2258 3570
MIN	1100	1300	990	1040	975	917		4240	2290	2210	929	1180
AC-FT	162000	162900	83760	70100	57760	88220		410700	199300	210100	91270	134400
CFSM	.36	.37	. 19	.16	. 14	.20		.91	. 46	.47	.20	.31
IN.	.42	.42	.21	.18	.15	. 23		1.05	.51	. 54	.23	.34
STATIS	TICS OF	MONTHLY ME	AN DATA	FOR WATER Y	EARS 1987	- 199	1, BY WATI	ER YEAR (WY)			
MEAN	2528	2310	1826	1699	1683	2124	5045	4773	3532	2361	1510	2065
MAX	2635	2737	2148	2092	2250	2732		6923	6193	3416	2260	2952
(WY)	1991	1991	1989	1989	1989	1990	1989	1989	1990	1991	1987	1989
MIN	2442	1970	1362	1140	1040	1435		1928	662	442	935	1166
(WY)	1988	1989	1991	1991	1991	1991	1990	1988	1988	1988	1990	1990
SUMMAR	Y STATIS	STICS	FOR	1990 CALEN	DAR YEAR		FOR 1991	WATER YEAR		WATER Y	EARS 1987	- 1991
	TOTAL			977536			963426					
ANNUAL				2678			2640			2658		4000
	T ANNUAL ANNUAL									3384 1950		1989 1988
				8890	Jun 14		9470	May 11		10700	Ann	23 1989
LOWEST	DATI.Y N	EAN		551	Aug 24		917	May 11 Mar 12		348	Jul	30 1988
ANNUAL	SEVEN-D	AY MINIMUM	1	8890 551 588 9250 11.31 510 1939000	Aug 19					357		29 1988
INSTAN	TANEOUS	PEAK FLOW		9250	Jun 14		9710	May 11		10800	` Apr	23 1989
INSTAN	TANEOUS	PEAK STAGE	:	11.31	. Jun 14		974 9710 11 596: 1911000	May 11 .64 May 11 a Sep 30		12.40	0 Apr	23 1989 12 1988
INSTAN	TANEOUS	LOW FLOW		510	Aug 24		596	a Sep 30		273	Jul	12 1988
ANNUAL	RUNUFF	(AU-FT)		1828000	,		1911000	.36		.925000 .30	8	
ANNIIAL	RUNOFF	(INCHES)		.37 4.97	ì		4	. 90		4.9	3	
	CENT EXC			5050			4700			4790	-	
50 PER	CENT EXC	CEEDS		1990			2220			2150		
90 PER	CENT EXC	CEEDS		1040			1060			1030		

a Due to regulation.

e Estimated

05243721 STRAIGHT RIVER AT COUNTY HIGHWAY 125 NEAR OSAGE, MN

LOCATION.--Lat 46°54'15", long 95°12'15", in NWkNWk sec.35, T.140 N., R.36 W., Becker County, Hydrologic Unit 07010106, on downstream side of culverts on County Highway 125, 2.7 mi southest of Osage.

PERIOD OF RECORD. --October 1986 to current year (no winter records in 1987, 1990-91). Records of hourly water temperature, available in files of the Geological Survey.

GAGE. -- Water-stage recorder. Elevation of gage is 1,435 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- No estimated daily discharges. Records good.

		DISCHAR	GE, CUBIC	FEET PER		WATER YEAR MEAN VAL		199 0 T	SEPTEMBE	R 1991		
YAG	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29						36	53	40	42	27	30
Ž	28						36	49	40	40	27	29
3	45						36	48	39	40	31	34
4	45						37	55	36	39	35	31
5	43						38	53	35	38	35	29
6	41						38 37	50 48	34 33	37 36	33 32	29 28
7 8	37 35						37 36	44	33	34	32 31	32
9.	33						35	41	32	34	31	36
10	32						34	39	34	33	30	35
11	31						34	3 9	34	33	30	33
12	31						33	38	34	34	2 9	32
13	30						33	38	32	35	28	32
14	30						40	38	33	33	28	40
15	30						46	36	35	32	28	43
16	30						49	36	34	31	28	45
17	45						49	35	32	31	28	43
18	47						47	32	32	31	28	. 41
19	44					33	44	30	34	31 30	. 28	39
20	42					34	41	29	37		27	36
21	40					36	39	30	40	30	27	33
22	38					37	39	31	40	31	28	32
23 24	37 36					4 4 4 4	38 36	39 52	37 35	31 30	27 28	32 32
24 25	36					44	35 35	48	34	29	32	33
										_		
26	34					43	34	46 43	34 35	29 28	32 31	33 31
27 28	35 33					42 40	37 39	40	34	28 28	32	32
2 9	32					39	51	39	35	27	33	30
30	32					37	61	39	35	28	34	31
31	32					36		40		27	33	
TOTAL	1111						1188	1278	1052	1012	931	1016
MEAN	35.8						39.6	41.2	35.1	32.6	30.0	33.9
MAX	47						61	55	40	42	35	45
MIN	28						33	29	32	27	27 1850	28 2020
AC-FT	2200						2360	2530	2090	2010	1030	2020
STATIST	ICS OF MO	NTHLY MEAN	V DATA FO	R WATER Y	EARS 1987	- 1991, 1	BY WATER	YEAR (W	()			
MEAN	38.2	39.2	38.9	37.5	35.2	37.0	43.7	43.0	37.2	32.2	32.7	35.7
MAX	49.5	39.7	39.7	37.5	35.9	38.2	48.5	46.5	41.7	40.2	36.8	41.5
(WY)	1987	1988	1989	1988	1989	1988	1989	1989	1989	1987	1987	1989
MIN	31.9	38.7	38.2	37.5	34.6	35.7	39.6	39.7	33.0	26.2	26.8	27.3
(WY)	1989	1989	1988	1989	1988	1989	1991	1988	1988	1988	1990	1990
SUMMARY	STATISTI	CS	FOR 1	990 CALEN	DAR YEAR	FOR 19	991 WATER	YEAR	WATER	YEARS 198	7 - 1991	
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL 10 PERC 50 PERC	MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY ANEOUS PE ANEOUS PE ANEOUS LO RUNOFF (A' ENT EXCEE ENT EXCEE ENT EXCEE	AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) DS	54 7.65 22a	Jun Oct 1		65 7.75 26	Apr 29 Apr 29 Aug 22	, 30	37.5 38.4 36.6 66 22 24 69 7.86 21b 27150 48 37 28	Sep 4 Jan 30 Jul 18 Sep 4 Sep 4	1990 1988	

a Occurred Aug. 10, 16, Sept. 11, 15.
b Occurred July 19, 21, 22, 23, 26, 1988.

05243725 STRAIGHT RIVER NEAR PARK RAPIDS, MN

LOCATION. -- Lat 46°52'30", long 95°03'56", in NWkNE's sec.11, T.139 N., R.35 W., Hubbard County, Hydrologic Unit 07010106, upstream from culvert on U.S. Highway 71, 3.2 mi south of Park Rapids.

DRAINAGE AREA. --53.2 mi².

PERIOD OF RECORD. --Occasional low-flow measurements, water years 1970-71, 1973, 1975-76. October 1986 to current year (no winter records in 1987, 1990-91). Records of hourly water temperature, available in files of the Geological Survey.

GAGE. --Water-stage recorder. Elevation of gage is 1,400 ft above National Geodetic Vertical Datum of 1929, from topographic map

topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--A discharge of 35 ft³/s was measured Aug. 4, 1976.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

		DEDOIMENO	2, 00210			MEAN VAI	LUES	. 1000 10 1		1001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	38						e54	77	e56	51	39	42
2	37						e54	72	e55	54	38	42
3 4	49 53						e55 e57	69 77	54 52	52 54	42 45	47 45
5	53						59	74	50	51	46	43
6	51						56	71	49	50	45	42
7	50						52	68	48	50	44	42
8	47						51	64	47	47	41	e42
9 10	45 44						51 50	61 59	47 49	47 43	40 39	e50 e48
11	43						48	58	49	45	40	e47
12	43						47	58	47	50	40	e46
13	42						48	62	46	48	38	e45
14 15	42 44						54 59	58 56	44 46	48 45	37 36	e55 e60
13	44						28	30	40	43	30	800
16 17	43 57						63 66	54 53	46 45	44 45	37 38	e60 e60
18	64						63	51	43	43	38	e58
19	60						61	49	44	45	37	e54
20	57						58	48	49	45	36	e50
21	56						56	e48	51	44	36	e48
22	53						55	48	50	45	36	e46
23 24	50 49						55 54	e51 e70	50 48	45 44	37 37	844 844
25	48						52	e67	47	41	43	e45
26	47						51	e64	45	41	42	e45
27	47						55	e60	44	42	42	844
28	47						57	e56	47	41	41	e43
29 30	45 45						63 80	e55 e54	48 50	40 38	41 41	e42 e41
31	46							e56		40	43	
TOTAL	1495						1684	1868	1446	1418	1235	1420
MEAN	48.2						56.1	60.3	48.2	45.7	39.8	47.3
MAX	64						80	77	56	54	46	60
MIN AC-FT	37 2970						47 3340	48 3710	43 2870	38 2810	36 2450	41 2820
CFSM	.91						1.06	1.13	.91	.86	.75	.89
IN.	1.05						1.18	1.31	1.01	.99	.86	.99
STATIST	TICS OF MO	NTHLY MEAN	DATA FO	R WATER Y	EARS 1987	- 1991.	BY WATER	YEAR (WY)				
MEAN	55.4	51.1	48.5	44.5	47.6	56.1	64.2	61.9	53.1	46.1	43.6	49.6
MAX	73.6	54.8	51.0	46.0	49.1	61.3	73.0	68.2	59.2	60.2	52.7	57.2
(WY) MIN	1987	1988	1988	1989 43.1	1988 46.0	1988 50.9	1989 56.1	1987 55.5	1987 46.3	1987 39.5	1987 35.9	1989 38.7
(WY)	47.0 1989	47.4 1989	46.0 1989	1988	1989	1989	1991	1988	1988	1988	1990	1990
											1987 - 1991	
ANNUAL	Y STATISTI Mean	CS	FUR	1990 CAL	ENDAR YEAR	K FUR	1991 WATE	EK IEAK	51.		190/ - 1991	
	I ANNUAL M	EAN							51.		1989	
	ANNUAL ME								51.	1	1988	
	DAILY ME								85	May	, 22 1987	
	DAILY MEA								32 34	Aug	15 1990 5 1990	
	SEVEN-DAY TANEOUS PE		75	Jun	4	84	Apr 3	30	89	Aus	31 1989	
	TANEOUS PE		1.			1.8			2.	66a Mar	11 1989	
INSTANI	CANEOUS LO	W FLOW	28	Aug		35	Many		28b			
	RUNOFF (A								37080	ne .		
	RUNOFF (C								13.	96 07		
10 PERC	RUNOFF (I	DS							69	֥		
50 PERC	CENT EXCEE	DS							51			
90 PERC	CENT EXCEE	DS							40			

a Backwater from ice.
b Occurred July 22, 23, 1988, Aug. 11, 1990.

e Estimated.

05245100 LONG PRAIRIE RIVER AT LONG PRAIRIE, MN

LOCATION.--Lat 45°58'30", long 94°51'56", in NE½NW½ sec.20, T.129 N., R.33 W., Todd County, Hydrologic Unit 07010108, on right bank 90 ft upstream from bridge on First Avenue at Long Prairie and 400 ft downstream from Venewitz Creek.

DRAINAGE AREA. -- 432 mi².

PERIOD OF RECORD. -- October 1971 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,281.74 ft above National Geodetic Vertical Datum of 1929.

REMARKS. -- Records good except those for estimated daily discharges, which are fair.

		DISCHARG	E, CUBIC	FEET PER	SECOND, W	IATER Y MEAN V	YEAR OCTOBER	1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	35 37 101 92 97	55 51 49 47 45	e28 e28 e27 e26 e26	e13 e13 e12 e12 e12	e12 e12 e12 e14 16	25 25 25 25 26	219 171 144 139 139	373 383 387 405 410	174 183 197 203 203	335 325 306 299 297	187 187 185 180 170	92 92 89 85 82
6 7 8 9 10	103 92 80 70 64	45 42 36 42 43	e26 e26 e26 e27 e28	e12 e12 e12 12 12	17 19 22 25 e26	28 28 28 28 31	140 141 136 138 141	400 377 357 337 311	192 169 151 148 152	311 324 322 314 300	166 162 162 154 157	77 77 117 137 140
11 12 13 14 15	55 49 47 44 41	43 41 41 41 39	30 30 37 28 28	12 12 12 12 12	e27 28 28 28 28 28	37 39 37 37 41	135 130 154 217 266	285 264 249 235 221	139 181 191 182 182	291 331 308 282 262	147 145 147 142 145	140 143 148 158 162
16 17 18 19 20	41 62 77 74 81	39 38 38 38 38	28 28 26 23 e21	12 12 12 e12 e12	28 26 26 26 25	30 29 29 50 90	300 345 400 425 426	214 203 193 190 188	173 163 161 163 201	243 233 236 235 227	146 147 145 144 145	163 162 159 149 142
21 22 23 24 25	80 73 70 64 60	38 38 37 32 24	e19 e18 e17 e16 e16	e12 e12 e12 e12 e12	25 25 25 25 25 25	113 118 129 128 198	417 407 383 337 290	181 174 169 168 179	221 228 237 231 224	225 225 218 216 208	143 145 138 133 141	138 135 132 127 126
26 27 28 29 30 31	58 54 51 50 51 59	30 35 30 30 30	e15 e15 e14 e14 e14 e13	e12 e12 e12 e12 e12 e12	25 25 25 	294 339 233 234 255 258	259 249 248 271 340	177 168 159 158 158 169	225 243 257 270 283	200 196 200 197 194 191	139 134 125 106 102 96	121 115 111 106 107
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2012 64.9 103 35 3990 .15	1175 39.2 55 24 2330 .09 .10	718 23.2 37 13 1420 .05	374 12.1 13 12 742 .03 .03	645 23.0 28 12 1280 .05	2987 96.4 339 25 5920 .22 .26	7507 250 426 130 14890 .58 .65	7842 253 410 158 15550 .59 .68	5927 198 283 139 11760 .46 .51	8051 260 335 191 15970 .60	4565 147 187 96 9050 .34 .39	3732 124 163 77 7400 .29 .32
MEAN MAX (WY) MIN	128 512 1987 13.4	118 425 1972 8.69	72.8 270 1987 3.19	57.6 217 1987 1.05	56.7 208 1987 1.62	163 441 1985 19.8	348 348 748 1986 71.8	245 653 1986 45.5	206 422 1985 27.5	179 777 1972 4.73	133 715 1972 10.0	121 607 1986 5.32
(WY)	1977 STATISTI	1977	1977	1977 1990 CALEN	1977	1989	1977 FOR 1991 WA	1977	1988	1988 WATER YEA	1989 PS 1072	1976
ANNUAL ANNUAL HIGHEST LOWEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL ANNUAL 50 PERC	TOTAL	EAN AN N MINIMUM AK FLOW AK STAGE C-FT) NCHES) DS	FOR .	27304.9 74.8 438 2.8 3.0 460	Mar 13 Jan 28 Jan 26 Mar 13 Mar 13		45535 125 426 12 12 432	Apr 20 Jan 3 Jan 3 Apr 19 Mar 26		153 366 25.2 2900 .84 3270 9.37 110500 .35 4.80 364 90 18	Jul 2 Jan 1 Jan 1 Jul 2	1972 1977 12 1972 22 1977 22 1977 22 1972 22 1972

e Estimated

05246500 GULL LAKE NEAR BRAINERD, MN

LOCATION.--Lat 46°24'40", long 94°21'26", in NF sec.20, T.134 N., R.29 W., Cass County, Hydrologic Unit 07010106, in pool of dam on Gull River, 800 ft south of outlet of Gull Lake, 0.2 mi upstream from Gull Lake Dam, and 8 mi northwest of Brainerd.

DRAINAGE AREA. -- 287 mi².

PERIOD OF RECORD. -- August 1911 to current year. Prior to October 1941 monthend contents only, published in WSP 1308. Published as Gull Lake Reservoir October 1941 to September 1956.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Aug. 10, 1949, nonrecording gage 800 ft north of present site at same datum. Aug. 11, 1949, to June 30, 1973, water-stage recorder at present site and at datum 1,188.14 ft, adjustment of 1912.

REMARKS.--Reservoir is formed by Gull Lake and several other natural lakes controlled by concrete dam completed in 1913; storage began in 1912. Capacity between elevation 1,192.75 ft and 1,194.75 ft (maximum allowable range and normal operating range) is 26,008 acre-ft. Contents shown herein are contents above elevation 1,188.00 ft. Prior to September 1978, published contents as contents above elevation 1,188.75 ft. Water is used to benefit navigation on Mississippi River below Minneapolis.

COOPERATION .-- Records were provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD. --Maximum contents, 74,800 acre-ft, capacity table then in use, June 30, 1914, elevation, 1,195.05 ft; minimum observed, 22,250 acre-ft, capacity table then in use, Mar. 20, 1924, elevation, 1,190.75 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 64,030 acre-ft, July 1, elevation, 1,194.23 ft; minimum, 54,260 acre-ft, Jan. 10, elevation, 1,193.48 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	1,193.54	55,040	
Oct.	31	1,193.74	57,630	-2,600
Nov.	30	1,193.59	55,680	-1,950
Dec.	31	1,193.55	55,160	-520
CAL	YR 1990			+1,550
Jan.	31	1,193.55	55,160	0
Feb.	28	1,193.61	55,940	+780
Mar.	31	1,193.67	56,720	+780
Apr.	30	1,194.13	62,720	+6,000
May	31	1,194.02	61,280	-1,440
June	30	1,194.12	62,590	+1,310
July	31	1,194.01	61,150	-1,440
Aug.	31	1,193.91	59,850	-1,300
Sept.	30	1,193.80	58,420	-1,430
WTR	YR 1991			+3,380

05247000 GULL RIVER AT GULL LAKE DAM, NEAR BRAINERD, MN

LOCATION.--Lat 46°24'40", long 94°21'12", in sec.20, T.134 N., R.29 W., Cass County, Hydrologic Unit 07010106, in headwater and tailwater of dam at outlet of Gull Lake, 8 mi northwest of Brainerd.

DRAINAGE AREA, -- 287 mi²

PERIOD OF RECORD. -- August 1911 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as "Gull Lake Reservoir" 1929.

GAGE.--Water-stage recorder on headwater and nonrecording gage on tailwater. Datum of gages is National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). August 1911 to May 23, 1929, and Dec. 1, 1929, to Aug 1, 1949, both gages were nonrecording gages at same site and datum in use. May 24 to Nov. 30, 1929, nonrecording gage 500 ft downstream at different datum. Aug. 2, 1949, to June 30, 1973, at present sites with datum of gage at 1,188.14 ft, adjustment of 1912.

REMARKS.--Discharge computed at dam on basis of modified weir formulas, the head being obtained from twice-daily readings on tailwater gage and from headwater recorder. Flow completely regulated by Gull Lake (station 05246500).

COOPERATION .-- Computations of daily discharge were provided by U.S. Army Corps of Engineers.

AVERAGE DISCHARGE (unadjusted).--80 years, 109 ft3/s, 5.16 in/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 1,120 ft3/s, May 15, 1938; no flow at times.

EXTREMES FOR CURRENT YEAR. -- Maximum daily discharge, 400 ft3/s, May 8-10; minimum daily, 18 ft3/s, Oct. 1-3; 13-16.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES DAY OCT NOV DEC JUN JUL AUG SEP JAN FEB MAR APR MAY 57 73 75 57 31 13 18 73 57 76 150 35 44 45 45 51 57 150 150 ___ TOTAL 58.0 120 21 68.2 94 57.6 94 54.4 29.2 MEAN 24.6 56.7 25.1 20 MAX MIN AC-FT CFSM .09 .24 .38 .39 .09 .10 27 .23 .20 FOR 1990 CALENDAR YEAR IN. .23 .49 .10 .11 SUMMARY STATISTICS FOR 1991 WATER YEAR ANNUAL TOTAL ANNUAL MEAN 31844.0 87.2 78.7 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN May Mar 18 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM Oct 1 Oct 10 Aug 28 Sep 27 ANNUAL RUNOFF (AC-FT)
ANNUAL RUNOFF (CFSM)
ANNUAL RUNOFF (CFSM)
ANNUAL RUNOFF (TRCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

05247500 CROW WING RIVER NEAR PILLAGER, MN

LOCATION.--Lat 46°18'18", long 94°22'38", in SWkNEk sec.30, T.133 N., R.29 W., Cass County, Hydrologic Unit 07010106, at Sylvan dam powerplant of Minnesota Power Co., 3.6 mi above mouth and 4.9 mi southeast of Pillager.

DRAINAGE AREA. -- 3,520 mi², approximately.

PERIOD OF RECORD. --October 1968 to September 1986, October 1987 to current year. Records for August 1924 to September 1968 available in files of the Minnesota District Office.

GAGE. --Water stage recorder. Datum of gage is 1,151.00 ft, adjustment of 1912. Prior to January 16, 1991, staff gage attached to retaining wall approximately 20 ft below the turbine outlet bays. Datum of staff gage is 1,150.00 ft, adjustment of 1912.

REMARKS. -- Records for period October 1, 1990 to April 24, 1991 are poor. Records for the period of April 25, 1991 to September 30, 1991 are good except those for estimated daily discharge, which are fair.

Discharge computed on the basis of powerplant records prior to January 16, 1991. Records for Oct. 1, 1968 to Sept. 30, 1975, were adjusted for storage change in the Sylvan dam reservoir. Flow partly regulated by powerplants and Gull Lake (station 05246500).

COOPERATION. -- Records collected by Minnesota Power Co. under general supervision of Geological Survey prior to February 1991, in connection with a Federal Power Commission project.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum daily discharge since 1924, 18,300 ft3/s, Apr. 14, 1965.

DATE COT NOV DEC 7AN FEB MARK AFR MAY JUN JUL ALIC SEP			DISCHAP	GE, COB.	IC. FEET F.	DAILY	MEAN V	ALUES	1990 IO	ori ird	CV 1991		
1 391 717 615 610 879 8682 8210 2910 1600 2110 81200 464 2 402 718 652 6500 879 8682 8210 3080 1540 2280 81140 477 3 520 6607 572 6500 879 8682 8210 3080 1540 2280 81140 477 5 762 7725 552 6500 8588 8755 81560 3210 1220 2230 8950 6666 6 770 758 552 8500 8588 8656 8110 3280 1260 2270 8950 596 7 550 757 551 880 888 8555 81410 3280 1260 2270 8950 596 7 550 757 551 880 888 8555 81410 3280 1260 2270 8950 596 8 7 550 757 551 880 888 8555 81410 3280 1260 2270 8950 596 8 9 514 866 552 8580 8684 8579 889 320 1282 1100 8650 551 11 15 551 646 880 8580 8664 838 819 8100 774 8111 11 15 51 646 880 8580 8664 831 8120 8120 8120 8120 8120 8120 8120 812	DAY	OCT	МОД	DEC	.TAN	FER	MAR	APR	MAY	.TIIN	ли.	AIIG	SEP
2 402 718 652 6500 e578 e682 e2310 3080 1540 2280 e1140 477 3 520 687 572 e500 e578 e682 e2110 3030 1490 2340 e1070 598 4 723 603 552 e500 e588 e656 e1410 3200 1220 2360 e1000 674 5 762 725 552 e500 e588 e656 e1410 3280 1260 2070 e950 686 6 75 560 757 551 e580 e588 e555 e1410 3200 1240 2170 e900 551 8 514 586 552 e580 e588 e586 e470 e1390 3200 1220 1860 e850 590 9 501 686 680 e580 e588 e539 e1410 3200 1220 1860 e850 e580 10 524 685 552 e580 e588 e588 e539 e1410 3100 770 1811 790 881 11 524 685 552 e580 e588 e586 e588 e470 e1390 3200 1220 1860 e850 590 11 524 685 552 e580 e588 e588 e539 e1410 3100 770 1811 790 881 12 5511 686 820 e580 e584 e539 e1410 3100 770 1811 790 881 12 5511 686 820 e580 e864 e501 e120 3800 940 1810 790 881 12 5511 686 820 e580 e864 e501 e120 3800 954 1750 801 798 12 5515 654 5512 e570 e882 e508 e2020 2460 913 1620 628 713 16 549 644 552 e570 e882 e508 e2080 2200 2460 913 1620 628 713 17 648 644 552 e570 e882 e508 e2080 2200 2460 913 1620 628 713 18 744 644 552 e570 e882 e508 e2160 2550 851 1330 648 791 18 744 644 552 e570 e882 e508 e2160 2550 851 1330 648 791 18 744 644 552 e570 e882 e508 e2160 2550 851 1330 648 791 18 744 644 552 e570 e882 e508 e2160 2550 851 1330 648 791 18 744 643 552 e570 e882 e508 e2160 2550 851 1330 648 791 18 744 643 552 e570 e882 e508 e2160 2550 851 1330 648 791 18 744 643 552 e570 e882 e508 e2160 2550 851 1330 648 791 18 744 643 552 e570 e882 e508 e2160 2550 851 1330 648 791 18 744 643 552 e570 e882 e508 e2160 2550 851 1300 640 758 19 696 584 550 8571 e566 e664 e2610 2080 838 1330 604 758 20 724 556 520 e579 e682 e508 e2160 2550 851 1300 640 758 21 820 645 408 e455 e613 e933 e2220 1220 e2240 1650 936 1350 629 818 18 744 644 552 e579 e682 e508 e2160 2550 851 1300 648 791 18 744 644 552 e579 e682 e508 e2160 2550 851 1300 648 791 18 744 644 552 e579 e682 e508 e2160 2550 851 1300 648 791 18 744 644 552 e579 e682 e508 e2160 2550 851 1300 648 791 18 744 649 644 551 e570 e882 e579 e2480 2480 736 1300 648 791 18 744 649 644 551 e570 e882 e579 e882 e579 e2480 2480 736 1300						e578	e682	e2210	2910				
3 520 697 572 600 5579 6682 2410 3030 1480 2340 e1070 598 4 723 603 552 6000 e571 709 e2100 3070 1320 2380 e1000 674 5 762 725 552 6500 e588 e755 e1560 3210 1280 2330 e960 666 6 750 758 552 e580 e588 e555 e1410 3200 1240 2170 e900 551 8 514 586 552 e580 e588 e555 e1410 3200 1240 2170 e900 551 8 514 586 552 e580 e588 e595 e1410 3100 778 e180 e190 e190 e190 e190 e190 e190 e190 e19	2		718	652		e579		e2310		1540	2280		477
5 762 725 552 6500 6588 e755 e1560 3210 1280 2230 e966 666 6 7750 758 552 6590 e588 e555 e1410 3200 1260 2070 e950 596 7 560 757 551 6580 e588 e555 e1410 3200 1220 1200 2170 e900 551 8 514 586 552 e580 e588 e555 e1410 3200 1220 1960 e850 590 9 501 607 552 e580 e588 e539 e1390 3140 992 1890 e810 583 10 524 645 552 e580 e604 e538 e1410 3100 778 1910 773 811 11 551 646 860 e580 e580 e664 e539 e1410 3100 778 1910 773 811 11 551 646 860 e580 e586 e586 e531 e1210 3060 970 1755 801 788 13 551 618 526 e580 e664 e531 e1210 3060 970 1755 801 788 13 551 618 526 e580 e664 e530 e1470 2630 994 1755 679 726 14 551 634 551 e580 e664 e530 e1480 2450 939 1755 670 725 15 570 644 552 e570 e682 e508 e2020 2460 913 1620 628 713 175 640 644 552 e570 e682 e508 e2160 2250 773 1460 678 738 17 640 644 552 e570 e682 e508 e2160 2250 773 1460 678 738 17 640 644 552 e570 e682 e508 e2160 2250 773 1460 678 738 17 640 644 552 e570 e682 e508 e2160 2250 773 1460 678 738 17 640 644 552 e570 e682 e508 e2160 2250 773 1460 678 738 17 640 644 552 e570 e682 e508 e2160 2250 773 1460 678 738 17 640 640 4352 e570 e682 e508 e2160 2250 773 1460 678 738 18 740 435 52 e570 e682 e508 e2160 2550 851 1330 642 791 18 740 436 552 e570 e682 e508 e2160 2550 851 1330 642 791 18 740 436 552 e570 e682 e508 e2160 2550 851 1330 642 791 18 740 436 552 e570 e682 e508 e2160 2550 851 1330 642 791 18 740 436 552 e570 e682 e508 e2160 2550 851 1330 642 791 18 740 436 552 e570 e682 e508 e2160 2550 851 1330 642 791 18 740 436 552 e570 e682 e508 e2160 2550 851 1330 642 791 18 740 436 552 e570 e682 e508 e2160 2550 851 1330 642 791 18 740 436 552 e570 e682 e508 e2160 2550 851 1330 642 791 18 740 436 552 e570 e682 e508 e2160 2550 18 80 13 130 642 791 18 740 436 552 e570 e682 e508 e2160 2550 18 80 13 130 642 791 18 740 14 7				572									
6 750 758 552 6590 6588 6556 e1410 3290 1260 2070 e950 596 8 514 586 757 551 6580 6588 6555 e1410 3200 1240 2170 e900 551 8 514 586 552 6580 6588 6470 e1390 3200 1220 1960 e855 590 9 501 607 552 6580 e588 e339 e1390 3210 1220 1960 e855 590 15 607 552 6580 e588 e538 e1390 3140 992 1890 e810 583 10 524 645 552 6580 e804 e538 e1390 3110 940 1830 778 811 11 551 646 860 6580 e774 e547 e1380 3110 940 1830 790 889 12 551 646 620 e580 e664 e531 e1210 3060 970 1750 801 788 13 551 618 526 6580 e664 e500 e1270 22830 954 1750 679 726 14 551 634 551 e580 e664 e500 e1270 22830 954 1750 679 726 14 551 634 551 e580 e664 e500 e1270 22830 954 1750 679 726 15 570 644 552 e570 e682 e508 e2020 2460 913 1620 628 713 16 549 644 551 e570 e682 e508 e2160 2250 73 1460 678 738 17 648 644 552 e570 e682 e508 e2160 2250 73 1460 678 738 17 648 644 552 e570 e682 e508 e2160 2250 851 1330 612 767 19 896 584 550 e571 e655 e664 e2610 2080 838 1330 612 767 19 896 584 550 e571 e655 e664 e2610 2080 838 1330 612 767 19 896 584 550 e571 e655 e664 e2610 2080 838 1330 604 758 20 724 565 520 e579 e682 e518 e2260 2420 1830 934 1750 608 790 11 820 645 408 e455 e613 e043 e043 e2560 1820 936 1350 608 790 12 820 645 408 e455 e613 e043 e0230 2420 1830 934 1750 608 790 12 820 645 408 e455 e613 e043 e0230 1740 946 1030 e130 642 715 266 647 368 590 e547 e621 e1220 e2420 1850 934 1090 640 679 24 813 551 463 e547 e621 e1220 e2420 1850 934 1090 640 679 24 813 551 463 e547 e621 e1220 e2420 1850 934 1090 640 679 24 813 551 463 e547 e653 e1380 e2330 1780 1030 1130 645 706 625 779 e468 682 e2420 2010 1400 e1060 439 713 30 822 522 383 e555 e2160 2380 1450 170 999 1070 640 571 266 647 368 590 e348 682 e2420 2010 1400 e1060 439 713 30 822 522 383 e555 e2160 2580 1450 170 999 1070 640 679 170 170 170 170 170 170 170 170 170 170													674
7 560 757 551 680 e588 e470 e1390 3200 1240 2170 e900 551 8 551 556 6560 e588 e470 e1390 3140 992 1890 e850 5990 9 501 607 552 e580 e588 e399 e1390 3140 992 1890 e850 588 10 524 645 552 e580 e604 e539 e1390 3140 992 1890 773 811 11 551 646 860 e580 e774 e547 e1360 3110 940 1830 790 889 12 551 646 620 e580 e664 e530 e1210 3060 970 1750 801 788 13 551 618 526 e580 e664 e530 e1270 2630 954 1750 679 726 14 551 634 551 6580 e664 e530 e1270 2630 954 1750 679 726 15 570 644 552 e570 e662 e508 e2020 2460 913 1620 628 713 16 549 644 552 e570 e662 e508 e2020 2460 913 1620 628 713 17 648 644 552 e570 e662 e508 e2160 2550 851 1330 648 791 18 744 644 552 e579 e662 e508 e2160 2550 851 1330 648 791 18 744 644 552 e579 e662 e508 e2160 2550 851 1330 648 791 18 744 644 552 e579 e662 e508 e2160 2550 851 1330 648 791 18 744 644 552 e579 e662 e508 e2160 2550 851 1330 648 791 18 20 665 504 565 50 e571 e556 e664 e2610 2080 838 1330 604 758 20 724 565 520 e579 e613 e727 e2580 1680 881 1330 604 758 22 6694 660 415 e492 e613 e1220 e2420 1680 881 1330 604 758 22 6694 660 415 e492 e613 e1220 e2420 1680 891 130 642 715 23 1010 704 462 e547 e621 e1220 e2420 1680 891 130 642 715 23 1010 704 462 e547 e621 e1220 e2420 1630 954 1090 640 679 24 813 551 468 e664 e562 e2180 e2300 1740 986 1030 623 735 735 28 757 321 689 e448 662 e2180 2000 1740 946 1030 623 735 735 28 757 321 689 e448 662 e2180 2000 1740 946 1030 623 735 735 28 757 321 689 e448 662 e2280 2010 1460 929 1050 535 716 688 MAX 1010 758 866 610 774 2420 2010 1860 881 1030 643 621 171 31 712 551 e579 e2280 2110 1320 1400 e1060 439 713 31 712 551 e579 e2280 1210 1320 736 1330 489 484 222 110 1320 736 1300 439 448 A64 677 e547 e2280 2110 1320 1400 e1060 439 713 31 712 551 e579 e2280 1210 1320 736 1300 439 448 A64 677 e547 e2280 2110 1320 736 1300 439 448 A64 677 e547 e668 e668 e668 e668 e2280 2000 1740 946 1030 623 735 735 848 MAX 3771 3674 124 175 1977 1977 1977 1977 1977 1977 1977				552									666
8 514 586 552 e580 e588 e588 e1990 3200 1220 1960 e850 590 9 590 9 501 607 552 e580 e588 e399 e1990 3140 992 1890 e810 583 10 524 645 552 e580 e604 e399 e1410 3100 778 1910 773 811 11 551 646 860 e580 e774 e547 e1360 3110 940 1830 790 889 12 551 646 620 e580 e664 e531 e1210 3060 970 1750 801 788 133 551 618 526 e580 e664 e500 e1270 2630 954 1750 679 726 14 551 634 551 e580 e664 e500 e1270 2630 954 1750 679 726 14 551 634 551 e580 e664 e500 e1270 2630 954 1750 679 726 15 570 644 552 e570 e662 e508 e2020 2460 913 1620 622 713 166 549 644 551 e570 e662 e508 e2160 2620 773 1460 678 738 17 648 644 552 e570 e662 e508 e2160 2550 851 1330 648 791 18 744 644 552 e579 e662 e508 e2160 2620 773 1460 678 738 19 696 554 550 e571 e556 e664 e2610 2080 838 1330 612 767 262 200 724 565 520 e579 e613 e727 e2580 1680 881 1350 602 780 21 820 645 408 e455 e613 e943 e2580 1620 936 1350 629 818 222 694 660 415 e492 e613 e1200 e2540 1640 951 1180 642 715 23 1100 704 462 e547 e632 e1320 e2540 1640 951 1180 642 715 26 647 368 590 e347 e563 e1380 e2330 1780 1030 1130 645 706 257 773 24 565 644 644 6547 e630 e1380 e2330 1780 1030 1130 645 706 257 773 24 684 e347 e630 e1380 e2330 1780 1030 1130 645 706 257 773 24 684 e347 e630 e1380 e2330 1780 1030 1130 645 706 257 773 24 684 e347 e6530 e1380 e2330 1780 1030 1130 645 706 257 773 245 644 e347 e6530 e1380 e2330 1780 1030 1130 645 706 257 773 245 644 e347 e6530 e1380 e2330 1780 1030 1130 645 706 257 773 245 644 e347 e6530 e1380 e2330 1780 1030 1130 645 706 257 773 273 2320 710 e426 e662 e2180 2500 1450 1700 892 1050 683 621 770 898 1070 640 571 266 647 368 590 e347 e664 e1590 2030 1780 925 1050 643 621 770 989 1050 640 773 247 7 e2380 2400 2400 1460 929 1050 555 716 640 640 877 104 646 662 26180 2000 1740 946 1030 623 735 688 MAX 1010 758 866 664 866 862 e2180 2000 1740 946 1030 623 735 688 MAX 1010 758 866 664 866 862 e2180 2000 1740 946 1030 438 948 484 662 2420 2010 1460 929 1050 555 716 640 640 950 1400 1400 1400 1400 1400 1400 1400 14									3290	1260			596
9 501 607 552 6580 6580 6586 639 61390 3140 992 1890 6810 583 10 524 645 552 6580 6604 6339 61410 3100 778 1910 773 811 11 551 646 860 6580 6774 6547 61360 3110 940 1830 790 889 12 551 648 520 6580 6664 6501 6120 3060 970 1750 801 788 13 551 618 526 6580 6664 6500 61480 2450 939 1750 609 725 15 570 644 552 6570 6662 6580 620 620 773 1460 679 16 549 644 551 6570 6662 6580 620 620 2460 913 1620 628 713 16 549 644 552 6570 6662 6580 62160 2550 851 1330 648 791 18 774 648 644 552 6570 6662 6580 62160 2550 851 1330 648 791 18 774 648 644 552 6579 6622 658 62160 2550 851 1330 648 791 18 774 648 644 552 6579 6622 658 620 620 773 1460 678 19 696 584 550 6571 658 662 664 620 2800 82160 2550 851 1330 642 767 19 696 584 550 6571 658 662 664 620 2800 838 1330 604 758 20 7724 565 520 6579 6613 672 62580 1680 881 1330 604 758 21 820 645 408 6455 6613 6240 2250 1680 881 1330 604 758 22 684 660 415 6492 6613 6120 62540 1680 881 1330 602 818 22 684 660 415 6492 6613 6120 62540 1690 954 1190 640 679 24 813 551 468 664 6547 6630 61380 2250 1640 951 1180 642 715 23 1010 704 462 6547 6630 61380 2230 1780 1030 1130 645 706 25 727 456 464 6547 6630 61380 2230 1780 1030 1130 645 706 25 727 456 464 6547 6630 61380 2230 1760 952 1050 643 621 27 732 320 710 6426 6662 622 62180 2000 1740 946 1030 623 735 28 757 321 689 6448 662 22420 2010 1320 1400 61060 439 713 31 712 551 659 62280 2100 1320 1400 61060 439 713 31 712 551 659 62280 2100 1320 1400 61060 439 713 31 712 551 659 62280 2100 1320 736 1330 439 464 4C-FT 40740 35770 34010 3456 3521 679 1320 736 1300 439 464 4CFT 40740 35770 34010 3456 3521 679 1380 749 1300 439 464 4CFT 40740 35770 34010 3456 3521 679 1989 2388 1079 1585 730 688 4MX 1010 758 860 610 774 2420 2810 1320 736 1300 439 4464 4CFT 40740 35770 34010 3456 3521 679 1989 2388 1079 1585 730 688 4MX 1010 758 860 610 774 2420 2810 3200 1740 946 1030 623 735 5MAX 3771 3674 1548 71399 218 255 548 882 545 447 206 120 1801 4MNILL MEAN 4074 1188 1125 2986 7429 5671 3483 3295 3520 3309 4MY 1074 1972 1977 1977				221	6 280	9 588				1230			500
10 524 645 552 \$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \													
11 551 646 860													
12 551 646 620 e580 e664 e530 e1270 2630 970 1750 801 788 13 551 638 526 e580 e664 e500 e1270 2630 954 1750 600 725 14 551 634 551 e580 e664 e500 e1270 2630 954 1750 600 725 15 570 644 552 e570 e682 e508 e2020 2460 913 1620 628 713 16 549 644 551 e570 e682 e508 e2160 2520 773 1460 678 738 17 648 644 552 e570 e682 e508 e2160 2550 851 1330 614 791 18 744 644 552 e570 e682 e579 e682 e508 e2160 2550 851 1330 612 767 19 696 584 550 e571 e656 e664 e2610 2080 838 1330 612 767 19 696 584 550 e571 e656 e664 e2610 2080 838 1330 604 758 20 724 565 520 e579 e613 e727 e2580 1680 881 1350 608 790 21 820 645 408 e455 e613 e943 e2560 1620 936 1350 629 818 22 694 660 415 e492 e613 e943 e2560 1620 936 1350 629 818 23 1010 704 462 e547 e631 e943 e2560 1620 936 1350 629 818 24 813 573 321 689 e446 e567 e630 e1380 e2330 1780 1030 1130 645 706 25 727 456 464 e547 e630 e1380 e2330 1780 1030 1130 645 706 25 727 456 464 e547 e630 e1380 e2330 1780 1030 1130 645 706 25 727 32 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 689 e448 e682 e2420 2010 1460 929 1050 633 621 27 732 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 30 829 522 383 e555 e2160 2580 1450 1760 922 1050 643 621 31 712 551 e579 e2230 1510 e1170 443 170 170 170 170 170 170 170 170 170 170													
14 551 634 551 658 686 6664 6508 e2020 2450 939 1750 660 725 15 570 6644 551 e570 e682 e508 e2160 2550 851 1330 6648 738 17 648 644 552 e570 e682 e508 e2160 2550 851 1330 648 738 18 744 644 552 e570 e682 e578 e2480 2480 736 1330 612 767 19 696 544 550 e571 e656 e664 e2610 2080 838 1330 604 758 20 724 565 520 e579 e613 e727 e2580 1680 881 1350 608 790 21 820 645 408 e455 e613 e943 e2560 1620 936 1350 629 818 22 694 660 415 e492 e613 e1200 e2540 1640 951 1180 642 715 23 1010 704 462 e547 e621 e1220 e2420 1630 954 1090 640 679 24 813 551 468 e547 e630 e1380 e2330 1780 1030 1130 645 706 25 727 456 464 e547 e630 e1380 e2330 1760 952 1050 643 621 27 732 320 710 e426 e662 e2180 2000 1740 989 1070 640 571 28 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 929 1050 555 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2180 2580 1450 1760 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2180 2580 1450 1760 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2180 2580 1450 1760 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2280 1510 e1170 443 707AL 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MEAN 663 601 553 560 634 997 1989 2388 1079 1585 730 688 MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM 10741 178 1172 767 630 638 1253 3122 2261 1583 36 555 25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1971 1971 1971 1981 198			646									801	
15 570 644 552 e570 e682 e508 e2160 2620 773 1640 628 773 16 648 644 551 e570 e682 e508 e2160 2620 773 1640 678 738 17 648 644 552 e570 e682 e508 e2160 2550 851 1330 648 791 18 744 644 552 e570 e682 e579 e2480 2480 736 1330 642 767 19 696 584 550 e571 e656 e664 e2610 2080 838 1330 604 758 20 724 585 520 e579 e613 e727 e2580 1680 881 1330 608 790 21 820 645 408 e455 e613 e943 e2560 1620 936 1350 629 818 22 694 660 415 e492 e613 e1200 e2540 1640 951 1180 642 775 23 1010 704 462 e547 e630 e1380 e2330 1780 1030 1130 645 706 25 727 456 464 e547 e630 e1360 2160 1770 989 1070 640 571 26 647 368 590 e547 e664 e1590 2030 1760 952 1050 643 621 27 732 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 669 e448 e682 e2180 2000 1740 946 1030 623 735 28 757 321 669 e448 e682 e2180 2000 1740 946 1030 633 713 30 829 522 383 e555 e2360 2110 1320 1400 e1060 439 713 31 712 551 e579 e2330 1510 e1170 443 TOTAL 20539 18033 17148 17369 17750 30904 56670 74030 32362 49150 22620 2064 MEAN 663 601 553 560 634 997 1989 2388 1079 1585 730 688 MAX 1010 758 860 610 774 2420 2610 3290 1760 952 1050 683 MAX 1010 758 860 610 774 2420 2610 3290 1760 952 1050 688 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 18600 64190 97490 4487 40940 CFSM .20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 519 1990 CALENDAR YEAR 34826 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 MIN 215 215 199 218 255 548 882 545 447 206 120 181 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 MIN 215 215 199 218 255 548 882 545 447 206 120 187 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 MIN 215 215 199 218 255 548 882 545 447 206 120 180 MIN 215 215 199 218 255 548 882 545 447 206 120 181 MANUAL MEAN 955	13	551	618	526	e580		e500	e1270	2630	954	1750		726
16 549 644 551 e570 e682 e508 e2160 2550 851 1330 648 791 188 744 644 552 e579 e682 e579 e2480 2480 736 1330 612 767 198 696 584 550 e571 e656 e664 e2610 2080 838 1330 604 758 20 724 565 520 e579 e613 e727 e2580 1680 881 1350 608 790 21 820 645 408 e455 e613 e943 e2560 1620 936 1350 629 818 22 694 660 415 e492 e613 e1220 e2540 1640 951 1180 642 715 23 1010 704 462 e547 e621 e1220 e2330 1780 1030 1130 645 706 25 727 456 464 e547 e630 e1380 e1380 e2330 1780 1030 1130 645 706 25 727 456 464 e547 e630 e1380 e1380 22030 1760 952 1050 643 621 27 732 320 710 e426 e682 e2180 2030 1760 952 1050 643 621 27 732 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 689 e448 e682 e2420 2010 1460 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1460 e1050 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1050 440 671 313 1712 551 e579 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1050 440 671 313 1712 551 e579 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2380 2110 1320 1400 e1060 439 713 31 7148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MMX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MMX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MMX 3010 34550 3210 6130 118400 148600 64190 97490 44870 40940 CFSM .20 118 177 198 198 118 177 198 198 198 1977 198 198 1986 1985 1972 1972 1986 MMX 371 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3308 MMX 371 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3308 MMX 371 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3308 MMX 371 3674 1544 1188 1125 2996 7429 5671	14		634	551							1750		
17 648 644 552 e570 e682 e508 e2160 2550 851 1330 648 791 18 744 6644 552 e579 e682 e579 e2480 2480 736 1330 612 767 19 696 584 550 e571 e656 e613 e727 e2580 1680 881 1330 604 758 20 724 565 520 e579 e613 e727 e2580 1680 881 1350 608 790 21 820 645 408 e455 e613 e1200 e2540 1620 936 1350 629 818 22 694 660 415 e492 e613 e1200 e2540 1640 951 1180 642 715 23 1010 704 462 e547 e621 e1220 e2240 1630 954 1090 640 679 24 813 551 463 e547 e630 e1380 e2330 1780 1030 1130 645 706 25 727 456 464 e547 e630 e1360 2160 1770 989 1070 640 571 26 647 368 590 e547 e664 e1590 2030 1760 952 1050 643 621 27 732 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 689 e448 e682 e2240 2010 1480 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 31 712 551 e579 e2210 2580 1450 1450 1450 1450 1450 1450 1450 145				5 52									
18													
19 696 584 550 e571 e656 e664 e2610 2080 838 1330 604 758 20													
20 724 565 520 6579 6613 6727 62580 1680 881 1350 608 790 21 820 645 408 6455 6613 e943 e2560 1620 936 1350 622 818 22 694 660 415 6492 6613 e120 e2540 1640 951 1180 642 715 23 1010 704 462 6547 6621 e1220 e2420 1630 954 1090 640 679 24 813 551 463 6547 6630 e1360 22330 1780 1030 1130 645 706 25 727 456 464 6547 6630 e1360 2160 1770 989 1070 640 571 26 647 368 590 6547 6664 e1590 2030 1760 952 1050 643 621 27 732 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 689 e448 6682 e2280 2010 1460 929 1050 535 716 29 816 404 477 6547 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1150 440 671 31 712 551 e579 e2230 1510 e1170 443 TOTAL 20539 18033 17148 17359 1755 30904 59670 74030 32362 49150 22620 20640 MEAN 663 601 553 560 634 997 1989 2388 1079 1585 730 688 MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 18400 64190 97490 4487 40940 CFSM 20 18 177 17 19 30 1640 64190 97490 4487 40940 CFSM 20 18 177 17 19 30 1640 64190 97490 4487 40940 CFSM 20 18 177 17 19 30 1600 64190 97490 4487 40940 CFSM 20 18 177 17 19 30 1640 64190 97490 4487 40940 CFSM 20 18 177 17 19 30 1640 64190 97490 4487 40940 CFSM 20 18 177 1977 1977 1977 1977 1977 1981 1981	18				65/9 -571								
21 820 645 408 e455 e613 e1200 e2540 1620 936 1350 629 818 22 694 660 415 e492 e613 e1200 e2540 1640 951 1180 642 715 23 1010 704 462 e547 e621 e1220 e2420 1630 954 1090 640 679 24 813 551 463 e547 e630 e1380 e2330 1780 1030 1130 645 706 25 727 456 464 e547 e630 e1360 2160 1770 989 1070 640 571 26 647 368 590 e547 e664 e1590 2030 1760 952 1050 643 621 27 732 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 689 e448 e662 e2420 2010 1460 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1150 440 671 31 712 551 e579 e2230 1510 e1170 443 TOTAL 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MAX 1010 758 860 610 774 e220 2610 3290 1760 2360 1200 889 MAX 1010 758 860 6610 774 e220 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM 20 18 177 767 630 638 1253 3122 2261 389 329 352 3520 3399 (WY) 1974 1972 1972 1986 1986 1986 1985 1972 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 1616 (WY) 1974 1972 1972 1986 1986 1986 1985 1972 1988 1988 1976 1976 ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN	19		565		e3/1				2000 1690				
22 694 660 415 e492 e613 e1200 e2540 1640 951 1180 642 715 23 1010 704 462 e547 e621 e1220 e2420 1630 954 1090 640 679 24 813 551 463 e547 e630 e1380 e2330 1780 1030 1130 645 706 25 727 456 464 e547 e630 e1360 2160 1770 989 1070 640 571 26 647 368 590 e547 e664 e1590 2030 1760 952 1050 643 621 27 732 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 689 e448 e682 e2420 2010 1460 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1150 440 671 31 712 551 e579 e2230 1510 e1170 443 TOTAL 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MEAN 663 661 553 560 634 997 1989 2388 1079 1585 730 688 MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 AC-FT 40740 35770 34010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MAX 3711 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1972 1986 1986 1986 1972 1988 1986 1985 1972 1972 1986 MIN 391 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1972 1986 1986 1986 1972 1989 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1977 1981 1981	21	820							1620				
23 1010 704 462 e547 e621 e1220 e2420 1630 954 1090 640 679 24 813 551 463 e547 e630 e1380 e2330 1780 1030 1130 645 706 25 727 456 464 e547 e630 e1360 2160 1770 989 1070 640 571 26 647 368 590 e547 e664 e1590 2030 1760 952 1050 643 621 27 732 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 689 e448 e682 e2420 2010 1460 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1150 440 671 31 712 551 e579 e2230 1510 e1170 443 TOTAL 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MEAN 663 601 553 560 634 997 1989 2388 1079 1585 730 688 MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM 20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1255 548 882 545 447 206 120 161 (WY) 1974 1972 1972 1980 1986 1986 1972 1989 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1974 1972 1977 1977 1977 1977 1981 1981 1981 1977 1988 1988													
24 813 551 463 e547 e630 e1380 e2330 1780 1030 1130 645 706 255 727 456 464 e547 e630 e1360 2160 1770 989 1070 640 571 26 647 368 590 e547 e664 e1590 2030 1760 952 1050 643 621 27 732 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 689 e448 e682 e2420 2010 1460 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1150 440 671 31 712 551 e579 e2230 1510 e1170 443 10714 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MEAN 663 661 553 560 634 997 1989 2388 1079 1585 730 688 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM 20 18 117 17 19 30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1972 1986 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1977 1981 1981													
25 727 456 464 e547 e630 e1360 2160 1770 989 1070 640 571 26 647 368 590 e547 e664 e1590 2030 1760 952 1050 643 621 773 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 689 e448 e682 e2420 2010 1460 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1150 440 671 31 712 551 e579 e2230 1510 e1170 443 TOTAL 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MEAN 663 601 553 560 634 997 1989 2388 1079 1585 730 6688 MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM .20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1974 1972 1972 1986 1986 1972 1976 1976 1976 1976 1976 1976 ANNUAL TOTAL 348426 350215 1042 1300 18401 MATER YEAR NUILL TOTAL 348426 380215 1042 MATER YEAR S1919 ANNUAL MEAN 955 FOR 1990 CALENDAR YEAR ANNUAL MEAN 955 WATER AND WATER ANNUAL MEAN 955 WATER ANNUAL M	24	813			e547				1780	1030	1130	645	706
27 732 320 710 e426 e682 e2180 2000 1740 946 1030 623 735 28 757 321 689 e448 e682 e2420 2010 1460 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1150 440 671 31 712 551 e579 e2330 1510 e1170 443 TOTAL 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MEAN 663 601 553 560 634 997 1989 2388 1079 1585 730 688 MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM .20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1972 1986 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1977 1981 1981	25	727			e547	e630	e1360		1770		1070		571
28 757 321 689 e448 e682 e2420 2010 1460 929 1050 535 716 29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1150 440 671 31 712 551 e579 e2230 1510 e1170 443 TOTAL 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MEAN 663 601 553 560 634 997 1989 2388 1079 1585 730 688 MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM .20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1972 1986 1986 1985 1972 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR ANNUAL MEAN 574 1997 1977 1977 1977 1977 1977 1977 19	26				e547								
29 816 404 477 e547 e2380 2110 1320 1400 e1060 439 713 30 829 522 383 e555 e2160 2580 1450 1760 e1150 440 671 31 712 551 e579 e2230 1510 e1170 443 TOTAL 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MEAN 663 601 553 560 634 997 1989 2388 1079 1585 730 688 MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM .20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1972 1986 1986 1985 1972 1969 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1977 1981 1981													
30 829 522 383 6555 62160 2580 1450 1760 e1150 440 671 31 712 551 6579 62230 1510 61170 443 1510 1712 120539 18033 17148 17369 1750 30904 59670 74030 32362 49150 22620 20640 1804 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 1804 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 1804 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 1807 1801 1801 1801 1801 1801 1801 1801													
31 712 551 6579 62230 1510 61170 443 70TAL 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 3260 32													
TOTAL 20539 18033 17148 17369 17750 30904 59670 74030 32362 49150 22620 20640 MEAN 663 601 553 560 634 997 1989 2388 1079 1585 730 688 MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM .20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1976 1986 1986 1972 1969 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1981 1981 1977 1978 1988 1976 1976 1976 ANNUAL TOTAL 348426 380215 ANNUAL MEAN 955 FOR 1990 CALENDAR YEAR 1042 1042 MATER YEAR WATER YEAR WATER YEAR WATER YEAR WATER YEAR HIGHEST ANNUAL MEAN 955 1042 1972 1972 1972 1972 1972 1972 1972 197		829											
MEAN 663 601 553 560 634 997 1989 2388 1079 1585 730 688 MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM .20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1974 1972 1972 1986 1986 1985 1972 1986 1985 1972 1986 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1981 1981 1977 1988 1988													
MAX 1010 758 860 610 774 2420 2610 3290 1760 2360 1200 889 MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM .20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1974 1972 1972 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1981 1981 1977 1988 1988			6033	553	560	634							
MIN 391 320 383 426 571 470 1210 1320 736 1030 439 464 AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 FCFSM .20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1972 1986 1986 1972 1969 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1977 1981 1981			758	860	610	774							
AC-FT 40740 35770 34010 34450 35210 61300 118400 146800 64190 97490 44870 40940 CFSM .20 .18 .17 .17 .19 .30 .60 .72 .33 .48 .22 .21 IN23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1972 1986 1986 1972 1969 1986 1985 1972 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1981 1981 1977 1988 1986 1976 1976 1976 1978 ANNUAL TOTAL 348426 380215 ANNUAL TOTAL 348426 380215 ANNUAL MEAN 955 1042 1932													
IN. 23 .20 .19 .20 .20 .35 .67 .83 .36 .55 .25 .23 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 371 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1972 1986 1986 1972 1969 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1981 1981 1977 1977													
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY) MEAN 1178 1172 767 630 638 1253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 1125 2996 7429 5671 3483 3295 3520 3309 (WY) 1974 1972 1972 1986 1986 1972 1969 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1981 1981 1977 1988 1976 1976 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR ANNUAL TOTAL 348426 380215 ANNUAL MEAN 955 1042 1300 LIGHEST ANNUAL MEAN 955 1042 1300	CFSM	.20	.18	.17		.19	.30	.60		. 33	.48	. 22	
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1991, BY WATER YEAR (WY)	IN.	. 23	.20	. 19	. 2 0	. 20	. 35	. 67	. 83	. 36	. 55	.25	. 23
MAX 3771 3674 1544 1188 11253 3122 2261 1583 1270 861 859 MAX 3771 3674 1544 1188 11252 2996 7429 5671 3483 3295 3520 3309 MY 1974 1972 1972 1986 1986 1972 1969 1986 1985 1972 1972 1986 MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1977 1981 1981	STATIST	CICS OF M	ONTHLY MEA	N DATA I	FOR WATER	YEARS 1969	- 1991,	, BY WATE	ER YEAR (WY)				
MAX 3/71 36/4 1544 1188 1125 2996 7429 56/1 3483 3295 3520 3309	MEAN	1178	1172	767	630	638	1253						
MIN 215 215 199 218 255 548 882 545 447 206 120 161 (WY) 1977 1977 1977 1977 1977 1981 1981 1981	MAX	3//1	3674	1544	1188	1125	2996						
No. 1977 1	(WI)	215	215	19/2	1800	1980	18/2			1803			
SUMMARY STATISTICS	(MA)	1977	1977	197	1977	1977	1081	102	1977	1988			
ANNUAL TOTAL 348426 380215 ANNUAL MEAN 955 1042 1300 HIGHEST ANNUAL MEAN 2564 1972 LOWEST ANNUAL MEAN 446 1977 HIGHEST DAILY MEAN 4270 Mar 18 3290 May 6 16600 Apr 12 1969 LOWEST DAILY MEAN 106 Aug 8 320 Nov 27 60 Aug 10 1976 ANNUAL SEVEN-DAY MINIMUM 271 Aug 14 420 Nov 24 68 Aug 9 1976 ANNUAL RUNOFF (AC-FT) 691100 754200 942000 ANNUAL RUNOFF (CFSM) .29 .32 .39 ANNUAL RUNOFF (INCHES) 3.93 4.29 5.35 10 PERCENT EXCEEDS 2120 2190 2750 50 PERCENT EXCEEDS 572 713 846 90 PERCENT EXCEEDS 363 529 398	SUMMARY	STATIST	cics	FOR	1990 CAL	ENDAR YEAR	1001	OR 1991	WATER YEAR	1000	WATER	YEARS 1969	- 1991
ANNUAL MEAN 955 1042 1300 HIGHEST ANNUAL MEAN 2564 1977 LOWEST ANNUAL MEAN 446 1977 HIGHEST DAILY MEAN 4270 Mar 18 3290 May 6 16600 Apr 12 1969 LOWEST DAILY MEAN 106 Aug 8 3200 Nov 27 60 Aug 10 1976 ANNUAL SEVEN-DAY MINIMUM 271 Aug 14 420 Nov 24 68 Aug 9 1976 ANNUAL RUNOFF (AC-FT) 691100 942000 ANNUAL RUNOFF (CFSM) 29 32 39 ANNUAL RUNOFF (INCHES) 3,93 4,29 5,35 10 PERCENT EXCEEDS 2120 2190 2750 50 PERCENT EXCEEDS 572 713 846 90 PERCENT EXCEEDS 363 529 398	ANNUAL	TOTAL			348426			380215					
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 2120 90 PERCENT EXCEEDS 363 163 2564 1972 446 1972 1972 1972 1972 1972 1972 1972 1973 1974 1975 1972 1972 1972 1972 1972 1973 1974 1975 1972 1972 1972 1972 1972 1972 1972 1972	ANNUAL	MEAN			95 5						1300		
LOWEST ANNUAL MEAN	HIGHEST	ANNUAL	MEAN								2564		
HIGHEST DAILY MEAN 4270 Mar 18 3290 May 6 16600 Apr 12 1969 LOWEST DAILY MEAN 106 Aug 8 320 Nov 27 60 Aug 10 1976 ANNUAL SEVEN-DAY MINIMUM 271 Aug 14 420 Nov 24 68 Aug 9 1976 ANNUAL RUNOFF (AC-FT) 691100 754200 942000 ANNUAL RUNOFF (CFSM) .29 .32 .39 ANNUAL RUNOFF (INCHES) 3.93 4.29 5.35 10 PERCENT EXCEEDS 2120 2190 2750 50 PERCENT EXCEEDS 572 713 846 90 PERCENT EXCEEDS 363 529 398	LOWEST	ANNUAL M	EAN								446		1977
LOWEST DALLY MEAN 106 Aug 8 320 Nov 27 60 Aug 10 1976 ANNUAL SEVEN-DAY MINIMUM 271 Aug 14 420 Nov 24 68 Aug 9 1976 ANNUAL RUNOFF (AC-FT) 691100 754200 942000 ANNUAL RUNOFF (CFSM) .29 .32 .39 ANNUAL RUNOFF (INCHES) 3.93 4.29 5.35 10 PERCENT EXCEEDS 2120 2190 2750 50 PERCENT EXCEEDS 572 713 846 90 PERCENT EXCEEDS 363 529 398	HIGHEST	DAILY M	EAN		4270	Mar 18		3290	May 6		16600	Apr 1	2 1969
ANNUAL RUNOFF (AC-FT) 691100 754200 942000 ANNUAL RUNOFF (CFSM) .29 .32 .39 ANNUAL RUNOFF (INCHES) 3.93 4.29 5.35 10 PERCENT EXCEEDS 2120 2190 2750 50 PERCENT EXCEEDS 572 713 846 90 PERCENT EXCEEDS 363 529 398	LOWEST	DAILY ME	AN		106	Aug 8		320	Nov 27		60	Aug 1	
ANNUAL RUNOFF (CFSM) .29 .32 .39 ANNUAL RUNOFF (INCHES) 3.93 4.29 5.35 10 PERCENT EXCEEDS 2120 2190 2750 50 PERCENT EXCEEDS 572 713 846 90 PERCENT EXCEEDS 363 529 398	ANNUAL	DINOPP 4	TAC-ET!		Z/1 601100	Aug 14		754900	NOV 24		042000	Aug	a 18/p
ANNUAL RUNOFF (INCHES) 3.93 4.29 5.35 10 PERCENT EXCEEDS 2120 2190 2750 50 PERCENT EXCEEDS 572 713 846 90 PERCENT EXCEEDS 363 529 398	ANNUAL	BINUER (CESM)		981100	20		/34200	32		842000	39	
10 PERCENT EXCEEDS 2120 2190 2750 50 PERCENT EXCEEDS 572 713 846 90 PERCENT EXCEEDS 363 529 398	ANNUAT.	RUNOFF	INCHES		3.	93		۷.	29		5	35	
50 PERCENT EXCEEDS 572 713 846 90 PERCENT EXCEEDS 363 529 398	10 PERC	ENT EXCE	EDS		2120			2190			2750		
90 PERCENT EXCEEDS 363 529 398	50 PERC	ENT EXCE	EDS		572			713			846		
	90 PERC	ENT EXCE	EDS		363			529			398		

e Estimated.

05261000 MISSISSIPPI RIVER NEAR FORT RIPLEY, MN

LOCATION.--Lat 46°10'50", long 94°21'56", in SEkNWk sec.27, T.43 N., R.32 W., Crow Wing County, Hydrologic Unit 07010104, on left bank 600 ft upstsream from Nokasippi River, 1.0 mile north of Fort Ripley, and at mile 982.1 upstream from Ohio River.

DRAINAGE AREA. -- 11,010 mi², approximately.

PERIOD OF RECORD.--June 1987 to current year. Operated as high-flow partial-record station October 1971 to June 1987. Prior to Oct. 1971 stage records collected by U.S. Weather Service.

GAGE.--Water-stage recorder. Datum of gage is 1,133.84 ft above National Geodetic Vertical Datum of 1929. Aug. 1904 to June 1987 nonrecording gages at different datums.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow partly regulated by powerplants and Winnibigoshish, Leech, Pokegama, Sandy, and Gull Lakes and by Pine River Reservoir (see stations 05201000, 05206000, 05210500, 05218500, 05230500, 05246500).

		DISCHA	RGE, CUBI	C FEET PI	R SECOND, DAIL	WATER Y MEAN	YEAR OCTOR	BER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1720	. 4590	e2000	e1700	e1500	e1700		7560	6660	5740	3320	2010
2	1760	4740	e2200	e1600	e1500	e1700		8550	6680	6700	3430	1950
3	2070	4340	e2200	e1500	e1480	e1700		8490	6910	7310	3210	2380
4 5	2080	4210	e2000	e1600	e1480	e1700	6400 5900	8900 9560	6760 6550	7680	3130	2020 2370
6	2410 2570	4240 4240	e1950 e2050	e1600 e1550	e1450 e1500	e1700 e1700	5490	10900	6330	7490 7200	2870 2700	2110
ž	2590	4230	e2100	e1500	e1550	e1730		11500	6050	7320	2660	1940
8	2880	4150	e2100	e1500	e1550	e1650		12700	5780	7210	2330	2120
ğ	2990	3690	e2050	e1500	e1500	e1550		13100	5300	6860	2190	2220
10	2930	3680	e2100	e1500	e1450	e1600	5360	13400	4660	6500	2320	296 0
11	2840	3450	e1950	e1500	e1480	e1600		13300	4550	6030	2140	3870
12	2720	3450	e1850	e1500	e1480	e1650		13200	4560	5700	2100	4240
13	2640	3530	e1900	e1500	e1500	e1600		12700	4150	5620	2060	4280
14 15	2560 2530	3510 3510	e1950 e1950	e1500 e1500	e1500 e1550	e1550 e1600		12200 11900	4050 4040	5550 5470	1940 1790	4570 4480
16	2560	3540	e1900	e1400	e1500	e1750		11600	3620	5240	1780	4440
17	2740	3520	e1850	e1400	e1600	e1900		11100	3370	4820	1890	4410
18	3160	3260	e1500	e1500	e1600	e2050		10300	3510	4940	1740	4220
19	2840	3340	e1350	e1550	e1500	e2300		9280	3380	4820	1680	3860
20	3150	3190	e1200	e1550	e1500	2610	8080	8520	3500	4720	1750	3710
21	3950	3160	e1300	e1500	e1500	2850	8050	7860	3610	4550	2050	3610
22	4100	3180	e1450	e1500	e1500	2960		7370	3340	4460	2080	3340
23	4790	3170	e1600	e1500	e1500	3030		6770	3410	4100	2090	3280
24	4730	3080	e1650	e1500	e1500	3370	7340	6600	3450	4120	2060	3240
25 26	4850 4810	2720 2630	e1700 e1750	e1600 e1500	e1400 e1450	3520 3840	7030 6790	6410 6460	3650 3830	3880 3740	2110 2120	2870 2720
27	4840	2230	e1800	e1500	e1550	5010		6230	3780	3600	1980	2700
28	4780	1870	e1850	e1500	e1650	5690		6150	3980	3420	2020	2490
29	4870	e1600	e1800	e1500		5800		6000	4690	3410	1820	2590
30	4840	e1750	e1800	e1500		5670	7120	6270	4970	3230	1840	2530
31	4700		e1800	e1500		5710		6610		3470	1820	
TOTAL	103000	101800	56650	47050	42220	82790		291490		164900	69020	93530
MEAN	3323	3393	1827	1518	1508	2671	6428	9403	4637	5319	2226	3118
MAX	4870	4740	2200	1700	1650	5800		13400	6910	7680	3430	4570
MIN	1720	1600	1200	1400	1400	1550		6000	3340	3230	1680	1940
AC-FT CFSM	204300	201900	112400 .17	93320 .14	83740 . 14	164200 . 24	382500 .58	578200 .85	275900 .42	327100 .48	136900 . 20	185500 .28
IN.	.35	.31 .34	.17	. 14	. 14	. 24	.65	.98	.42	. 56	. 20	.32
											.20	.02
MEAN	3263	3075	2323	2060	2100	7 - 199 3755	7593	ER YEAR (WY 7154	4731	3192	2190	2832
MAX	3343	3393	2856	2527	2705	6042		9403	8021	5319	3360	3897
(WY)	1989	1991	1988	1988	1989	1990		1991	1990	1991	1987	1989
MIN	3143	2680	1827	1518	1508	2671		3025	1196	729	1517	1769
(WY)	1990	1989	1991	1991	1991	1991		1988	1988	1988	1989	1990
	Y STATIS TOTAL	TICS	FOR	1990 CALE	NDAR YEAR		FOR 1991 1384400	WATER YEAR		WATER	YEARS 198	7 - 1991
ANNUAL				3777			3793			3682		
HIGHES	T ANNUAL	MEAN		· · · · ·			0,00			4380		1989
LOWEST	ANNUAL	MEAN								2813		1988
	T DAILY	MEAN		12700	Mar 19	, 20	13400	May 10		15000	Apr	15 1989
	DAILY M	ean		1100	Sep 3		1200	Dec 20		558	Jul	30 1988
		AY MINIMUM		1170	Aug 19		13400 1200 1440 13500 8.	Dec 18		626	Jul	24 1988
INSTAN	TANEOUS	PEAK FLOW		10.	n Ma 10		13200	78 May 10		15300	56 Arr	15 1989
MATCHT	TANEOUS	PEAK STAGE LOW FLOW		1020	0 Mar 18		8.	70 May 10		528	APF	15 1989 30 1988
	RUNOFF	(AC-FT)		2735000	pah 2		2746000		2	667000	Jul	20 1900
		(CFSM)		, . 3	34		2, ,0000	.34	-		. 33	
ANNUAL	RUNOFF	(INCHES)		4.6	66		4.	.68		4.	. 54	
	CENT EXC			9360			7070		-	6860		
	CENT EXC			2690			3150			2810		
90 PER	CENT EXC	eeds		1400			1500			1500		

e Estimated

05267000 MISSISSIPPI RIVER NEAR ROYALTON, MN

LOCATION.--Lat 45°51'41", long 94°21'33", in lot 2, sec.20, T.39 N., R.32 W., Morrison County, Hydrologic Unit 07010104, at plant of Minnesota Power Co., 4 mi northwest of Royalton, 4.5 mi downstream from Swan River, and at mile 956 upstream from Ohio River.

DRAINAGE AREA.--11,600 \min^2 , approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1924 to current year.

REMARKS.--No estimated daily discharges. Records poor. Discharge computed based on powerplant records. Flow partly regulated by powerplants and Winnibigoshish, Leech, Pokegama, Sandy, and Gull Lakes and by Pine River Reservoir (see stations 05201000, 05206000, 05210500, 05218500, 05230500, 05246500).

COOPERATION. -- Records collected by Minnesota Power Co. under general supervision of Geological Survey, in connection with a Federal Power Commission project.

		DISCHARGE	, CUBIC	FEET PER	SECOND, DAILY	WATER MEAN	YEAR OCTOBE	R 19 9 0 T O	SEPTEMBER	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1620 1420 2000 2110 1830	4410 4300 3940	1860 2120 1970 1830 1750	1970 1630 1590 1620 1710	1600 1260 1460 1340 1420	1500 1360 1580 1470 1400	5920 5860 6780	8200 9380 9350 10000 10200	6220 6480 6910 6990 6240	5020 6800 7560 7950 7590	2790 3330 2720 2810 2490	1380 1710 1720 1940 1620
6 7 8 9 10	2510 2140 2480 2570 2680	3920 3780 3150	1920 2330 2010 2090 2080	1710 1650 1500 1550 1500	1390 1390 1420 1580 1400	1650 1630 1620 1270 1580	0804	12100 12100 13100 13200 13800	6470 5680 5880 5130 4480	7250 7210 6960 6810 6390	2320 2300 2150 1900 2080	1970 1570 2020 2030 2140
11 12 13 14 15	2290 2500 2380 2200 2150	3570 3220 3070	2120 1940 1860 1620 1980	1430 1570 1550 1380 1200	1480 1710 1610 1420 1480	1460 1480 1480 1240 1480	4960 5580 6320	13600 13300 13100 12600 12500	4290 4020 3630 3780 4070	5830 5150 4890 4950 5100	2150 1750 1890 1970 1430	3170 3840 3240 3990 3750
16 17 18 19 20	2250 2600 2900 2580 2710	3060 3000 2790	1810 1820 1340 1420 1280	1330 1410 1690 1540 1650	1520 1520 1430 1390 1470	1610 1620 1680 1850 2110	8010 8570 8920	12000 11900 10900 9710 8730	3360 3240 3520 3090 3570	4650 4290 4300 3840 4310	1680 1420 1770 1190 1430	3770 3670 3820 3360 3320
21 22 23 24 25	3660 3990 4640 4520 4610	2760 2750 2850	1220 1350 1520 1520 1510	1410 1520 1380 1570 1620	1330 1320 1600 1380 1460	2800 3510 3800 3430 4100	8830 8300 7680	7720 7030 6900 6380 6500	3700 3580 3480 3400 3640	3890 3920 3600 3580 3480	1460 1960 1900 1590 1770	3340 2760 2900 3040 2840
26 27 28 29 30 31	4550 4570 4390 4670 4550 4370	2120 1370 1270 1750	1550 1700 1960 1960 1850 1710	1470 1390 1330 1400 1520 1420	1340 1430 1530	4140 4780 5970 6150 5820 5410	7200 6810 6960 7930	6540 6390 6260 6340 5920 6690	3570 3320 4060 4250 4880	3240 3290 3250 2890 2900 2820	1930 1690 1490 1860 1310 1410	2200 2420 2020 2190 2340
MEAN MAX MIN AC-FT 1 CFSM	94440 3046 4670 1420 87300	93010 5 3100 4410 1270 184500 10	55000 1774 2330 1220 9100	47210 1523 1970 1200 93640 .13	.13	80980 2612 6150 1240 160600	204920 2 6831 9530 4890 406500 3 .59	302440 9756 13800 5920 599900	134930 4498 6990 3090 267600 .39 .43	153710 4958 7950 2820 304900 .43	59940 1934 3330 1190 118900 .17 .19	80080 2669 3990 1380 158800 .23
MEAN	.30 CS OF 1 3987 12930 1966 632 1937	14640 1972 618	.18 DATA F0 2900 6456 1952 627 1935	.15 DR WATER Y 2577 5713 1966 534 1935	.13 EARS 1924 2490 5048 1984 758 1937	.26 - 199 3612 12290 1966 968	91, BY WATER 2 8890 3 22200 5 1966 8 1924	.97 YEAR (WY 8469 24600 1950 1663 1977		4508 12420 1975 648 1988	3540 15230 1953 449	3477 12940 1986 535 1934
ANNUAL M HIGHEST	EAN ANNUAL	MEAN MEAN MEAN MEAN AY MINIMUM (AC-FT) (CFSM) (INCHES) EEDS EEDS	•	3639			FOR 1991 W 1347340 3691 13800 1190 1380 2672000 3 4.3 7200 2790 1420			4577	YEARS 1924 Apr Nov Sep	- 1991 1966 1934 16 1965 25 1936 3 1936

05267000 MISSISSIPPI RIVER NEAR ROYALTON, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963-66, 1975 to current year.

REMARKS. -- Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

WALER QUALITY DATA, WATER TEAR OCTOBER 1990 TO SEPTEMBER 1991												
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	CIFIC CON- I DUCT- A ANCE (US/CM) (U	INCE (S LAB IS/CM) U	PH TAND- (S ARD NITS) U	STAND- A' ARD WA INITS) (DI	TURE E ATER I EG C) (N	M FUR- SID- CTY TTU)	(MM I OF SC HG) (P	YGEN, DIS- DLVED (MG/L) 1	COLI- FORM, FECAL, 0.7 UM-MF COLS./ 00 ML) 31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
DEC												
19	1100	1860	326	350	8.3	8.0	0.0 1.	.5	738 12	2.5	36	K8
FEB 05 APR	1045	1400	360	376	7.4	7.7	0.5 2.	.1	740 6	5.0	95	K10
16	1115	8170	222	260	8.4	8.2	5.0 4.	1	740 12	2.6	92	270
MAY 21	0930	8400	260	238	8.1	7.8 16	3.0 3.	.0	732 8	3.5		220
JUL 11	1145	6150	260	266	8.0	8.0 23	3.0 4.	0	730	7.8	K18	160
AUG												
15	1100	1770	317	296	8.0	8.3 22	2.5 2.	.2	732	7.2	K10	160
DATE	CALC DIS SOL (MG, AS (- DIS VED SOL' /L (MG CA) AS	UM, SODIUM, S- DIS- VED SOLVED /L (MG/L MG) AS NA)	DIS- SOLVED (MG/L AS K)	WAT DIS TOT IT FIELD MG/L AS CACO3	LAB (MG/L AS CACO3)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL (00940	RIDI DISOL' (MG) AS	E, S- VED /L F)
DEC 19 FEB	47	15	7.7	1.7	164	169	0	200	15	6.3	0.:	2
05	46	15	7.3	1.9	193	179	0	236	16	6.2	0.:	1
APR 16	35	10	4.9	2.7		116			9.9	6.1	0.	1
MAY 21 JUL	33	9	.7 4.8	1.5	123	113	0	150	6.9	4.7	<0.	1
11	38	11	4.1	1.6	132	130	0	161	4.5	3.5	0.3	1
AUG 15	40	13	6.3	1.4		140			7.8	6.8	0.:	1
DATE	SILIC DIS- SOLV (MG, AS SIOC	- AT 16 VED DEG /L DIS SOL' 2) (MG	DUÉ GEN, BO NITRITE . C DIS- S- SOLVED VED (MG/L /L) AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	AMMONÍA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507	AS P	US HO, - ED L)
DEC 19 FEB	8.3	3 20:	2 0.01	0.30	0.05	0.05	0.7	0.01	0.01	<0.01	<0.0	01
05	11	210	0.01	0.40	0.16	0.16	0.8	<0.01	<0.01	<0.01	<0.0	01
APR 16	7.4			0.27	0.03	<0.01	0.5	0.07	0.07	0.02	<0.0	01
MAY 21	6.2	2 15	<0.01	0.07	0.02	0.01	0.9	0.05	0.01	<0.01	<0.0	01
JUL 11	12	194	<0.01	0.14	0.03	0.03	1.2	0.06	0.02	0.03	0.0	02
AUG 15	9.6	5 184	<0.01	0.05	0.02	0.01	0.8	0.06	0.02	0.01	<0.0	01

05267000 MISSISSIPPI RIVER NEAR ROYALTON, MN--Continued (National stream-quality accounting network station)

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. Z FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
DEC	•		-10			-0.5	-0.0		-0	_	70
19 FEB	2	86	<10	<1	51	<0.5	<1.0	<1	<3	5	79
05 APR											
16 MAY	6		10	<1	42	<0.5	<1.0	1	<3	<1	210
21	13	88	<10	1	40	<0.5	<1.0	<1	<3	3	140
JUL 11	13	89	10	2	42	<0.5	2.0	<1	<3	8	280
AUG 15	3	100	<10	2	41	<0.5	<1.0	<1	<3	<1	52
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
DEC	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
DEC 19 FEB	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
DEC 19 FEB 05 APR	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
DEC 19 FEB 05	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
DEC 19 FEB 05 APR 16 MAY 21	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
DEC 19 FEB 05 APR 16	DIS- SOLVED (UG/L AS FB) (01049)	DIS- SOLVED (UG/L AS LI) (01130) 7	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)

SAUK RIVER BASIN

05270500 SAUK RIVER NEAR ST. CLOUD, MN

LOCATION.--Lat 45°33'35", long 94°14'00", in SWkSWk sec.8, T.124 N., R.28 W., Stearns County, Hydrologic Unit 07010203, on right bank 0.5 mi northwest of Waite Park, 3 mi west of St. Cloud, and 5 mi upstream from mouth.

DRAINAGE AREA. -- 925 mi².

PERIOD OF RECORD.--July 1909 to December 1912, April to December 1913, May to November 1929, March 1930 to September 1931, April to November 1932, March to November 1933, March 1934 to September 1981, October 1990 to September 30, 1991. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS. -- WSP 895: Drainage area. WSP 1308: 1912(M), 1932(M). WSP 1508: 1937(m).

GAGE.--Water-stage recorder. Datum of gage is 1,034.63 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 22, 1934, nonrecording gage on highway bridge 1 mi downstream at datum 6.77 ft lower.

REMARKS. -- Records good except those for estimated daily discharge, which are fair. Flow regulated by powerplants and reservoirs above station.

		DISCHAR	GE, CUI	BIC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBE VALUES	IR 1990 :	O SEPTEMB	ER 1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	92	194	123	e86	e86	e86	819	967	612	635	473	141
2	86	216	106	e86	e87	e86	762	932	722	665	715	144
3	136	214	131	e85	e89	e86	714	918	752	679	743	149
4 5	169 1 58	215 205	122 132	e85 e85	e92 e97	e86 e86	670 627	1060 1130	731 743	674 648	774 809	144 139
6 7	143 139	198 191	125 122	e84 e84	e100 e104	e86 e85	583 536	1260 1270	748 741	620 607	781 708	127 134
é	142	174	118	e83	e104 e103	e85	476	1230	714	592	663	843
ğ	147	161	115	e83	e102	e86	461	1200	703	569	628	936
10	154	147	114	e83	e100	e86	452	1180	690	555	578	1010
11	160	137	110	e83	e 99	e90	411	1160	675	623	532	1120
12	166	128	112	e83	e98	e95	378	1130	707	790	486	1170
13	167	119	92	e83	e97	e98	465	1100	716	765	444	1150
14	169	119	100	e83	e95	e104	593	1040	725	756	406	1130
15	171	124	e99	e82	e94	e110	697	977	723	747	370	1110
16	155	120	e98	e83	e93	e120	739	928	692	708	344	1070
17	153	114	e96	e83	e93	e130	773	847	675	666	334	1020
18	183	113	93 e93	e83	e92	e150	790 808	776 756	654 604	622 e600	306 275	1010 944
19 20	168 169	111 110	93	e83 e83	e92 e91	e170 186	825	707	620	e580	2/3 258	907
21	199	116	e93	e83	e90	247	846	646	696	e560	243	890
22 23	193 188	140 143	e92 e91	e83 e83	e90 e89	268 384	867 8 71	594 564	666 666	e540 e520	230 228	870 823
23 24	187	134	e90	e83	e88	420	842	532	693	e505	227	754
25	177	131	e89	e83	e88	500	821	489	693	e485	241	730
26 27	174 180	109 1 29	e88 e87	e83 e83	e88 e88	615 784	775 800	463 479	665 651	e471 492	245 226	684 619
27 28	168	91	e86	e84	e87	902	826	490	623	552	203	580
2 9	152	122	e86	e84		926	830	531	593	533	187	550
30	157	139	e86	e84		903	984	541	577	518	177	530
31	171		e86	e85		875		567		489	159	
TOTAL	4973	4364	3168	2591	2612	8935	21041	26464	20470	18766	12993	21428
MEAN	160	145	102	83.6	93.3	288	701	854	682	605	419	714
MAX	199 86	216 91	132 86	86 82	104	926	984 378	1270 463	752 577	790 471	809 159	1170
MIN AC-FT	9860	8660	6280	5140	86 5180	85 17720	41730	52490	40600	37220	25770	127 42500
CFSM	.17	.16	.11	.09	.10	.31	.76	.92	.74	.65	. 45	.77
	-	MONTHLY MEAN										
MEAN	143	158	123	89.8	98.6	278	765	464	388	286	193	171
MAX	555	1091	528	336	568	1380	2810	1572	1333	1088	1250	1136
(WY)	1958	1972	1972	1980	1966	1966	1965	1975	1957	1957	1972	1957
MIN	6.22	6.18	5.15	3.25	7.61	28.7	16.5	7.84	15.9	10.6	10.5	10.7
(WY)	1934	1934	1935	1935	1935	1940	1934	1934	1934	1934	1933	1933
SUMMARY ANNUAL	STATIST	rics			FOR 19 14780		ER YEAR			WATER YE	EARS 1909	- 1991
ANNUAL					40	5				279a		
HIGHEST	ANNUAL	MEAN								732		1972
	ANNUAL N				107	^	Man 7			51.0 7940	A	1931
	DAILY N				127 8		May 7 Jan 15			1.3	Apr Jan	14 1965 6 1935
		AY MINIMUM			8		Jan 9			1.5	Jan	2 1935
INSTANT	ANEOUS I	PEAK FLOW			130	0	May 6,7			9100	Apr	13 1965
INSTANT	ANEOUS I	PEAK STAGE				4.29	Sep 12,13			10.68	Apr	13 1965 25 1936
		LOW FLOW			7		Oct 2			.30	Nov	25 1936
ANNUAL	RUNOFF	(AC-FT)			29320					202000	1	
ANNUAL	RUNOFF	(Crom)				. 44				. 30	,	

a Median of annual mean discharges is 240 ft³/s.

e Estimated.

05270700 MISSISSIPPI RIVER AT ST. CLOUD, MN

LOCATION.--Lat 45°32'50", long 94°08'44", in SE\sW\ sec.1, T.35 N., R.31 W., Sherburne County, Hydrologic Unit 07010203, on left bank about 250 ft below the left downstream end of the City of St. Cloud hydropower dam and at mile 926.3 upstream from Ohio River.

DRAINAGE AREA.--13,320 mi², approximately.

PERIOD OF RECORD.--October 1988 to current year.

GAGE.--Water-stage recorder. Datum of gage is 958.49 ft above National Geodatic Vertical Datum of 1929.

REMARKS.--Records fair. Flow partly regulated by powerplants and Winnibigoshish, Leech, Pokegama, Sandy, and Gull Lakes and by Pine River Reservoir (see stations 05201000, 05206000, 05210500, 05218500, 05230500, 05246500).

		DISCHA	ARGE, CUB	IC FEET PE	R SECOND, DAIL	WATER Y	YEAR OCTOB	ER 1990 TO	SEPTEMB	ER 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2080 2020 3270 2890 2830	e5500 e5500 e5040 e4580 e4840	e2230 e2470 e2530 e2310 e2360	e2510 e2110 e1780 e2110 e2170	e1940 e1910 e1740 e1930 e1880	e2000 e1880 e1890 e1890 e1890	8570 8150 8140 8210 8320	10900 12100 11900 12900 13600	9640 10100 10200 10000 9270	8090 9210 10300 10300 10000	4630 5670 5320 5120 4810	2140 2350 2990 2720 2550
6 7 8 9 10	3290 2960 3600 3720 3880	e4900 e4780 e5040 e4180 e4010	e2610 e2940 e2890 e2710 e3250	e2170 e2050 e1880 e1880 e1880	e1880 e1880 e1880 e1950 e2060	e1870 e1860 e2060 e1620 e1990	7310 7170 6770 6690 6670	15600 16200 17000 17600 17600	9180 8420 8060 8090 7500	9690 9280 9230 8910 8510	4440 4440 4220 3870 3250	2940 2510 4470 3870 4210
11 12 13 14 15	3990 3650 3520 3580 3320	e4420 e3700 e4260 e4160 e4470	e2710 e2460 e2120 e2410 e2460	e1880 e1870 e1990 e1870 e1880	e1890 e2350 e2180 e1940 e1900	e1940 e1880 e1880 e1620 e1920	6780 6860 7020 8330 9770	17300 16900 16700 15500 14500	6950 6650 6400 5820 5910	7920 7570 7060 6920 6770	3810 3700 2870 3370 3020	4910 5910 5730 6250 6560
16 17 18 19 20	3370 3890 3870 3990 4030	e3700 e4070 e3880 e3700 e3870	e2290 e2350 e1940 e1630 e1500	e1880 e1610 e1760 e1910 e2050	e1900 e2180 e2070 e1880 e1880	e2230 e2220 2750 2840 3260	10600 11100 11500 11900 11900	14100 14000 13000 12000 10900	5770 4950 5100 5170 5 730	6730 6220 6280 6780 6730	2690 2910 2570 2540 2330	6270 6160 6070 5690 4880
21 22 23 24 25	4160 5400 5730 5890 6110	e3510 e3880 e3780 e3880 e2920	e1490 e1880 e2020 e2060	e1880 e1880 e1880 e1750 e1990	e1890 e1890 e1890 e1890 e1820	3710 4700 6050 6160 7330	12200 11400 10800 10300 9440	10200 9360 8890 8810 8280	5360 5170 5210 5170 5340	6500 6430 6140 5420 5670	2520 2570 2980 2650 2710	4910 5470 4580 4440 5180
26 27 28 29 30 31	6130 5570 5680 e5870 e5680 e5500	e2950 e2760 e2010 e1950 e2170	e2060 e2170 e2730 e2520 e2410 e2050	e1990 e1740 e1880 e1740 e1880 e1880	e1600 e1900 e1950	8260 9370 e9830 e9570 9620 8930	8710 9620 8770 9220 10700	8030 8080 8210 8380 8720 9530	5470 5480 5670 5430 6390	5180 5350 5350 5190 4670 4990	3010 2960 2610 2570 2510 1770	3710 3430 3760 3050 4020
TOTAL MEAN MAX MIN AC-FT CFSM IN.	129470 4176 6130 2020 256800 .31 .36	118410 3947 5500 1950 234900 .30 .33	71620 2310 3250 1490 142100 .17 .20	59730 1927 2510 1610 118500 .14 .17	54050 1930 2350 1600 107200 .14 .15	125020 4033 9830 1620 248000 .30	272920 9097 12200 6670 541300 .68 .76	386790 12480 17600 8030 767200 .94 1.08	203600 6787 10200 4950 403800 .51	223390 7206 10300 4670 443100 .54	104440 3369 5670 1770 207200 .25 .29	131730 4391 6560 2140 261300 .33 .37
								R YEAR (WY		.02	.24	.0,
MEAN MAX (WY) MIN (WY)	3815 4176 1991 3592 1990	3348 3947 1991 2953 1989	2505 2819 1989 2310 1991	2235 2788 1989 1927 1991	2232 2950 1989 1815 1990	5150 7557 1990 3860 1989	10480 15760 1989 6576 1990	10660 12480 1991 8899 1990	7575 10100 1990 5841 1989	5302 7206 1991 3930 1989	2335 3369 1991 1535 1989	4595 7360 1988 2297 1990
SUMMAR	Y STATIS	TICS	FOR	1990 CALE	NDAR YEAR		FOR 1991	WATER YEAR		WATER	YEARS 1988	3 - 1991
ANNUAL HIGHES LOWEST ANNUAL INSTAN INSTAN INSTAN ANNUAL ANNUAL ANNUAL 10 PER	T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D TANEOUS	MEAN MEAN MEAN EAN AY MINIMUN PEAK FLOW PEAK STAGW (AC-FT) (CFSM) (INCHES) EEDS EEDS		1724300 4724 14100 1330 1650 16700a 7.2 3420000 34.8 10400 3640 1810	7a Mar 16	,20	3731000	May 9 Dec 21 Dec 18 May 9 71 May 9	I	4950 5154 4615 18900 1010 1250 19700 7. 792 3586000 5. 10400 3610 1880	Aug Aug May 71 May Aug	1991 1990 10 1989 24 1989 31 1989 9 1991 9 1991 23 1989

a Result of regulation.
e Estimated.

ELK RIVER BASIN

05275000 ELK RIVER NEAR BIG LAKE, MN

LOCATION.--Lat 45°20'02", long 93°40'00", in NE\sW\ sec.23, T.22 N., R.27 W., Sherburne County, Hydrologic Unit 07010203, on right bank at upstream side of highway bridge, 4 mi east of Big Lake and 4 mi downstream from St. Francis River.

St. Francis River.

DRAINAGE AREA. --615 mi2.

PERIOD OF RECORD. --April 1911 to September 1917, April to September 1931, April to November 1932, March to November 1933, March 1934 to September 1987, October 1990 to current year.

REVISED RECORDS. --WSP 895: 1939. WSP 1308: 1912(M), 1915-17(M).

GAGE. --Water-stage recorder. Datum of gage is 899.60 ft above National Geodetic Vertical Datum of 1929. April 1911 to Sept. 30, 1917, April 1, 1931, to July 26, 1934, nonrecording gage at some site and datum.

REMARKS. --Records good except those for periods of estimated daily discharge, which are fair.

AVERAGE DISCHARGE. --60 years (water years 1912-17, 1935-87, 1991), 277 ft³/s, 6.12 in/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 7,360 ft³/s, Apr. 16, 1965, gage height, 10.86 ft; minimum, 3.6 ft³/s, July 31, 1934.

EXTREME FOR CURRENT YEAR. --Maximum discharge, 2,070 ft³/s, May 10, gage height, 5.62 ft; minimum daily discharge, 128 ft³/s, Jun. 22; minimum gage height, 1.06 ft, Nov. 28.

ursci	iarbe, iz	DISCHARG			ER SECOND,			1990 TO	SEPTEMBE	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	192	302	e197	e136	e130	e150	1270	643	985	412	291	191
2	188	300	e192	e135	e132	e155	1170	660	1080	414	422	191
3	227	301	e190	e135	e135	e155	959	718	1140	406	478	191
4	268	300	e185	e135	e137	e157	776 640	914	1100 1050	431 494	464 464	191
5 6	280 278	299 300	e180 e180	e135 e135	e140 e145	e158 e160	649 557	1120 1360	1080	564	474	191 188
ž	265	296	e178	e134	e150	e160	480	1470	1120	553	499	188
8	253	279	e175	e134	e153	e160	463	1580	1040	498	481	467
9	239	253	e175	e133	e155	e161	428	1880	911	452	443	583
10	228	240	e175	e133	e157	e162	396	2040	861	416	408	546
11	228	233 224	e175	e132	e157	e163	366	2030 1840	898 916	404 533	374 346	513 481
12 13	236 237	218	e174 e173	e132 e132	e156 e156	e165 e168	352 441	1650	901	596	318	446
14	231	212	e168	e131	e155	e170	569	1440	861	592	298	425
15	221	211	e163	e131	e155	e175	666	1280	769	e560	281	412
16	211	213	e158	e130	e154	e185	741	1160	674	e510	311	391
17	213	211	e155	e130	e153	e205	837	1030	596	e470	371	381
18	234	210	e152	e130	e153	e230	968	868	556	e450	314	374
19 20	247 260	206 207	e150	e129 e129	e152	e260 e305	1150 1340	72 7 619	523 528	e425 e405	e308 e300	356 328
21	308	210	e148 e147	e129	e152 e151	e370	1360	534	569	e370	e285	308
22	354	208	e146	e128	e151	e460	1250	488	568	342	e280	288
23	391	208	e145	e129	e150	e560	1130	474	5 5 8	332	e270	271
24	398	208	e144	e129	e150	e646	1020	474	547	325	e260	268
25	386	210	e143	e129	e150	765	888	480	528	325	e250	258
26	376	e191	e142	e129	e150	831	756	510	492	321	e240	248
27 28	365 352	e181	e141	e130	e149	873	667 589	601 795	451 418	321 360	e230 e220	245 242
20 29	334	e173 e191	e140 e139	e130 e130	e149 	942 996	565	1040	391	349	e215	229
30	316	e199	e138	e130		1090	608	997	368	325	e210	219
31	307		e137	e130		1290		962		301	202	
TOTAL	8623	6994	5005	4074	4177	12427	23411	32384	22479	13256	10307	9610
MEAN	278	233	161	131	149	401	780	1045	749	428	332	320
MAX	398	302	197	136	157	1290	1360	2040	1140	596	499	583
MIN	188	173	137	128	130	150	352	474	368	301 26290	202 20440	188
AC-FT CFSM	17100 .45	13870 .38	9930 .26	8080 .21	8290 .24	24650 .65	46440 1.27	64230 1.70	44590 1.22	.70	.54	19060 .52
IN.	.52	. 42	.30	.25	.25	.75	1.42	1.96	1.36	.80	.62	.58
		ONTHLY MEAN								,,,,		,
MEAN	213	211	149	109	115	297	652	443	348	269	178	201
MAX	778	794	410	290	392	1125	1823	1620	1647	1026	926	1050
(WY)	1985	1972	1966	1979	1984	1966	1969	1986	1984	1978	1972	1986
MIN	32.7	56.3	44.1	38.4	29.8	58.8	75.5	37.5	20.5	8.94	8.74	23.4
(WY)	1934	1935	1935	1935	1936	1934	1934	1934	1934	1934	1934	1932
SUMMARY	STATIST	ICS			FOR 1	991 WATER	YEAR			WATER Y	EARS 1911	- 1991
ANNUAL ANNUAL					1527	47 18				277		
	ANNUAL I	MEAN			٦.	10				669		1986
	ANNUAL M									88.0		1935
HIGHEST	DAILY M	EAN			20		lay 10			7170	Apr	16 1965
	DAILY ME.						an 22			4.0		1 1934
		Y MINIMUM					an 19			4.5		27 1934
TNATANI	CANEOUS P	EAK STAGE			20		ay 10 ay 10			7360 10.8		16 1965 16 1965
	ANEOUS L					J. UZ. 19	IV			3.6		31 1934
	RUNOFF (3030	00				200800		
ANNUAL	RUNOFF (CFSM)				.68				. 4		
	RUNOFF (9.24				6.1	2	
	ENT EXCE									560 162		
	ENT EXCE									65		

e Estimated.

CROW RIVER BASIN

05280000 CROW RIVER AT ROCKFORD, MN

LOCATION.--Lat 45°05'12", long 93°44'02", in sec.29, T.119 N., R.24 W., Hennepin County, Hydrologic Unit 07010204, on right bank at Rockford, 150 ft downstream from bridge on State Highway 55 and 1 mi downstream from confluence of North and South Forks.

DRAINAGE AREA.--2,520 mi², approximately.

PERIOD OF RECORD.--April to July 1906 (published as "near Dayton"), June 1909 to September 1917, April to November 1929, March 1930 to September 1931, April to November 1932, March to November 1933, March 1934 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1115: 1932. WSP 1508: 1933. WDR MN-77-2: 1972 (M)(m).

GAGE.--water-stage recorder. Datum of gage is 893.08 ft above National Geodetic Vertical Datum of 1929. Apr. 13 to July 21, 1906, nonrecording gage at Berning Mill 14 mi downstream at different datum. June 4, 1909, to Sept. 30, 1917, nonrecording gage at site 600 ft downstream at different datum. Apr. 23, 1929, to Aug. 21, 1934, nonrecording gage at site 600 ft downstream at present datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

		DISCHARGE	CUBI	C FEET PER	SECOND, N	WATER MEAN	YEAR OCTOBI	ER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	184	195	e92	e72	e83	e128		1920	e3800	3470	1340	952
3	179 196	187 184	e93 e95	e72 e72	e84 e86	e129 e130	1470 1320	1920 1930	e4100 e4330	3530 3480	1570 1660	869 811
4	202	183	e98	e72	e88	e130	1220	2080	4780	3440	1700	756
Š	214	179	e99	e72	e88	e132		2370	5270	3370	1730	696
5	231	179	e100	e72	e88	e133		2830	5650	3310	1770	658
7	242	177	e100	e72	e88	e135	1040	3160	5820	3270	1840	642
8	249		e99	e72	e88	e139	990	3490	5770	3230	1970	1260
9	240	163	e99	e72	e89	e145	959	3820	5550	3130	2060	2350
10	228	165	e98	e72	e90	e152		4040	5240	2980	2110	3180
11	219	165	e98 e98 e94 e92	e72 e72 e72 e72 e72 e73 e74	e92 e93	e170	901	4130	4860	2840 3060	2120	4100
12 13	213 208	162 158	694	e/2	e93	e200 e220	890 1110	4070 3910	4470 4070	3080	2110 2100	5120 6190
14	202	156	e92	674	e92	e255	1380	3680	3700	3010	2060	7150
15	196	154 153	e92	e76	e90	e275	1720	3440	3410	2920	1980	7970
16	190	153	e92	e79	e90	e290	1980	3200	3130	2850	1910	8500
17	186	150			e93	e310	2180	3010	2810	2820	1870	8700
18	229	148	e86	e83	e96	e325		2890	2560	2820	1830	8670
19	284	146	e83	e83	e99	e360		2810	2400	2810	1800	8490
20	288	146	e80	e83	e100	e410	2580	e2800	2350	2740	1780	8250
21 22	352	149	e77	e83	e104	e570		e2700	2510	2550	1760	7930
23	308 281	147 143	e74 e72	e03	e109 e111	e646 e814		e2600 e2520	2600 2670	2320 2000	1710 1670	7560 7180
24	270	140	e72	603	e114	e990		e2500	2720	1780	1580	6810
25	266	135	e72	e83	e116	e1210		e2600	2820	1610	1520	6440
26	258	e116	e72	e823 e833 e833 e833 e833 e833 e833 e833	e124	1400		e2700	2900	1470	1460	6060
27	242	e89	e72	e83	e126	1740		e3000	2980	1380	1380	5720
28	233	e86	e72	e83	e128	1790	1970	e3100	3070	1380	1290	5390
29	223	e88				1750		e3200	3130	1350	1210	5070
30	207	e90	e72	e83		1780		e3300	3140	1330	1130	4770
31	199		e72	e83		1750		e3500		1330	1050	
TOTAL	7219	4504	2671	2410	2743	18608		93220	112610	80660	53070	148244
MEAN	233	150	86.2	77.7	98.0	600		3007	3754	2602	1712	4941
MAX	352	195	100	83	128	1790		4130	5820	3530	2120	8700
MIN AC-FT	179 14320	86 8930	72 5300	72 4780	83 5440	128 36910		1920 184900	2350 223400	1330 160000	1050 105300	642 294000
CFSM	.09	.06	.03	.03	.04	.24		1.19	1.49	1.03	.68	1.96
IN.	.11	.07	.04	.04	.04	. 27	7 .77	1.38	1.66	1.19	.78	2.19
		ONTHLY MEAN								1.10	.,,	2.10
MEAN	394	372	257	147	146	774	2047	1340	1209	879	483	455
MAX	3809	1909	1477	815	1115	4085		5992	6166	4359	2511	4941
(WY)	1986	1972	1983	1983	1966	1983		1986	1906	1957	1957	1991
MIN	16.6	28.3	17.3	12.4	12.5	25.1	57.1	26.7	14.8	5.76	5.87	13.0
(WY)	1934	1937	1938	1938	1959	1934	1934	1934	1934	1934	1934	1933
	STATISTI	CS	FOR	1990 CALENI	DAR YEAR		FOR 1991	WATER YEAR		WATER Y	EARS 190	6 - 1991
ANNUAL				236/28			578351			70.5		
ANNUAL		CC AN		649			1585			735a 2754		1986
	ANNUAL M ANNUAL ME									64.5	:	1931
	DAILY ME	MA?		5370	Jun 25		8700	Sen 17		22100	Anr	16 1965
	DAILY MEA	N		19	Jan 1		72	Dec 23		3.8		4 1934
		MINIMUM		20	Jan 1 Jan 1		72	Dec 23		4.0	Jul	31 1934
INSTANT	ANEOUS PE	AK FLOW		5390	Jun 25		8740	Sep 17		22400	Apr	16 1965
INSTANI	ANEOUS PE	AK STAGE		5370 19 20 5390 12.26	Jun 25		8700 72 72 8740 12.	26 Sep 17		19.2	7b Apr	16 1965 15 1936
INSTANT	ANEOUS LC	W FLOW									c Nov	15 1936
ANNUAL	RUNOFF (A	NCTIT)		469300			1147000	63		534100 .2	• 0	
ANNUAL	RUNOFF (CRUNOFF (I	NCHES)		.26 3.49			8.			3.9		
10 PERC	ENT EXCER	DS.		1900			3860	- →		2020		
50 PERC	ENT EXCEE	DS		242			932			228		
90 PERC	ENT EXCEE	DS		469500 .26 3.49 1900 242 38			83			36		

Median of annual mean discharges is 552 ft³/s.

From floodmark.

Caused by ice jam upstream. Estimated.

RUM RIVER BASIN

05284000 MILLE LACS LAKE AT COVE BAY NEAR ONAMIA, MN

- LOCATION.--Lat 46°06'36", long 93°37'08", in NE\xNE\x sec.21, T.42 N., R.26 W., Mille Lacs County, Hydrologic Unit 07010207, in Minnesota Department of Natural Resources boathouse at Cove Bay boatlanding, 3.6 mi northeast of Onamia.
- PERIOD OF RECORD. -- June 1931 to current year. Monthend records for the period October 1939 to September 1953 published in WSP 1278 (fragmentary 1940-41). Published as "at Wealthwood" prior to October 1939, and as "at Garrison" October 1939 to September 1987 (gage heights collected at Wealthwood October 1939 to September 1941, but converted to gage datum at Garrison for publication).
- GAGE. --Water-stage recorder. Datum of gage is 1,240.40 ft above National Geodetic Vertical Datum of 1929 (levels by Minnesota Department of Natural Resources). Gage readings have been reduced to elevations NGVD. Prior to Oct. 1, 1941, nonrecording gage at Wealthwood, 17 mi north of present site, at various datums; gage readings have been reduced to elevations, adjustment of 1912. Oct. 1, 1941, to Sept. 30, 1958, water-stage recorder at Garrison, 16 mi northwest of present site at datum 1,240.50 ft, adjustment of 1912. To convert these readings to National Geodetic Vertical Datum of 1929, subtract 0.10 ft. Oct. 1, 1958, to Sept. 30, 1987, water stage recorder at Garrison at present datum.
- REMARKS.--Water level affected by fixed-crest spillway constructed in 1953 at outlet of Ogechie Lake, 2.7 mi downstream from outlet of Mille Lacs Lake, with crest at elevation 1,250.50 ft. Water level subject to fluctuation caused by change in direction and velocity of wind and by seiches.
- EXTREMES FOR PERIOD OF RECORD. --Maximum elevation, 1,253.87 ft, Aug. 14, 1972, affected by wind action and seiche action; maximum daily, 1,253.43 ft, Aug. 22, 1972; minimum observed, 1,245.74 ft, Oct. 16-19, 1936.
- EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,253.19 ft, July 5, affected by wind and seiche action; maximum daily, 1,251.85 ft, July 7; minimum, 1,250.04 ft, Nov. 22, affected by wind and seiche action; minimum daily, 1,250.17 ft, Nov. 29.

MONTHEND ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

Oct. 31 1,250.43	Feb. 28 1.250.44	June 30 1,251.66
Nov. 30 1,250.21	Mar. 31 1,250.64	July 31 1,251.69
Dec. 31 1,250.30	Apr. 30 1,251.05	Aug. 31 1,251.32
Jan. 31 1,250.31	May 31 1,251.55	Sept. 30 1,251.00

NOTE. -- Elevations other than those shown are available.

RUM RIVER BASIN

05286000 RUM RIVER NEAR ST. FRANCIS, MN

LOCATION.--Lat 45°19'40", long 93°22'20", in SEk sec.19, T.33 N., R.24 W., Anoka County, Hydrologic Unit 07010207, on left bank at upstream side or highway bridge, 4 mi south of St. Francis and 15.8 mi upstream from mouth. DRAINAGE AREA.--1,360 mi², approximately.
PERIOD OF RECORD.--May to November 1929, March 1930 to September 1931, April to November 1932, March 1933 to

current year.

REVISED RECORDS.--WSP 1308: 1930(M), 1932(M).

GAGE.--Water-stage recorder. Datum of gage is 860.74 ft above National Geodetic Vertical Datum of 1929 (levels by Anoka County Highway Department). Prior to Nov. 9, 1933, nonrecording gage at site 50 ft downstream at

by Anoka County nighway Departments.

same datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Occasional regulation by Ogechie (also controls Mille Lacs Lake) and Onamia Lakes.

AVERAGE DISCHARGE.--59 years (water years 1931, 1934-91), 626 ft³/s, 6.25 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,100 ft³/s, Apr. 20, 1965, Apr. 13, 1969; maximum gage height, 11.63 ft, Apr. 13, 1969; minimum discharge, 29 ft³/s, Aug. 18, 1934, gage height, 1.91 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,430 ft³/s, May 12, gage height, 7.28 ft; minimum daily discharge, 150 ft³/s, Jan. 26; minimum gage height, 2.38 ft, Nov. 28.

		DISCHARG	E, CUB	IC FEET PER	SECOND, DAILY	WATER MEAN	YEAR OCTOR	ER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	221	518	e298	e176	e158	e195	2850	1200	2000	774	670	335
2	219	496	e285	e175	e162	e197	2570	1260	2100	770	758	324
3	237	475	e278	e173	e180	e198	2090	1380	2250	806	825	327
4 5	273 300	459 437	e272 e270	e173 e173	e210 e225	e199 e210	1610 1290	1650 2010	2370 2400	956 1170	883 917	326 319
6	319	422	e268	e173	e235	e215	1130	2490	2350	1350	923	319
6 7	344	412	261	A177	~? 4 5	e215	1040	2800	2300	1470	895	337
8	363	395	262	e172 e172 e172 e171 e170 e170	e252 e260 e270 e268 e250 e245 e233 e227	e219	1020	2870	2230	1470	851	567
9	369	383	261 262	e172	e260	e222	1030	3000	2080	1310	792	844
10	352	378	262	e171	e270	e228	1040	3440	1830	1110	729	1000
11 12	342	365 359	267 269	e170	e268	e230		4050	1510	988	675	1040
13	333 327	359 353	e262	e165	923U	235 e235	1070 1120	4400 4290	1300 1190	1020 977	627 583	1040 1010
14	314		e243	e163	e233	e235	1250	3840	1140	964	548	959
15	307	344	e232	e165	e227	e239	1480	3270	1110	919	516	891
16	304	341	e228	e162	e210	e242		2740	1090	869	492	819
17	311	336	e224	e162	e210	243	1900	2290	1050	826	501	761
18	331	327	e224	e161	e208	256		1850	1040	834	506	713
19	368	322	e224	e160	e203	e283	2690	1540	1050	800	505	671
20	430	318	e224	e160	e200	353	3110	1370	1020	779	494	632
21 22	545 661	. 306 306	e221 e217	e160 e155	e208 e210	499 670		1240 1120	1010 1030	803 801	474 453	605 5 76
23	729		e205	e155	e205	e967		1030	1070	790	437	547
24	781		e193	e151	e199	1280	2660	977	1110	771	418	519
25	807	301	e190	e151	e194	1630	2130	934	1130	740	408	499
26	798	299	e185	e150	e190	2080	1680	1000	1070	700	408	479
27	760	e275	e180	e151	e190	2330	1390	1230	976	675	405	462
28	709	243	e178	e151	e195	2510		1480	893	688	400	442
29	645	e262	e178	e155		2660		1810	823	694	389	430
30 31	593 552	e280	e178 e178	e155 e1 5 5		2810 2900		1990 2020	772 	692 686	371 352	415
TOTAL	13944	10659	7217	5057	6042	24985		66571	43294	28202	18205	18208
MEAN MAX	450 807	355 518 243	233	163 176 150	216 270	806 2900		2147 4400	1443 2400	910 1470	587 923	607 1040
MIN	219	5¥3 2T0	298 178	150	270 158	195		934	772	675	352	319
AC-FT	27660	21140	14310	10030	11980	49560	108100	132000	85870	55940	36110	36120
CFSM	.33	.26	.17	.12	.16	. 59		1.58	1.06	. 67	.43	. 45
IN.	.38	. 29	. 20	. 14	. 17	.68		1.82	1.18	.77	. 50	. 50
STATIST	TICS OF	MONTHLY MEAN	DATA	FOR WATER V	EARS 1929	- 199	1 RY WATE	R YEAR (WY	Y			
MEAN	465	428	318	240	241	592	1508	1110	900	635	398	427
MAX	2300	1715	1051	660	813	2699	4269	3899	3399	2532	2251	2362
(WY)	1969	1972	1983	1987	1966	1966	1969	1986	1984	1954	1972	1986
MIN	65.4	71.8 1934	1051 1983 55.8 1934	51.5	59.2	75.8	154	73.6	43.7 1934	34.5	37.3	47.1
(WY)	1934			1934	1934	1934		1934		1934	1934	1933
SUMMAR'S ANNUAL	Y STATIS	STICS	FOR	1990 CALEN 195166	DAR YEAR		FOR 1991 296884	WATER YEAR		WATER YE	ARS 1929	- 1991
ANNUAL				535			813			626		
	I ANNUAI	MEAN								1512		1986
LOWEST	ANNUAL	MEAN								66.1		1934
	T DAILY	MEAN		2800	Jun 11		4400	May 12		10000	Apr 1	3 1969
	DAILY N	ÆAN		70 70 2840 6.17	Jan 1		150	Jan 26		30	Aug	3 1934
T NO 01 A NO	DILOGIES	DAY MINIMUM		70	Jan 1		152	Jan 22		31	Aug	1 1934
MALGAL	TAMEOUS	PEAK FLOW		2840 6.17	Jun 11 Jun 11		4430 7.	28 May 12		11 63	Anr 1	3 1969
INSTANT	TANEOUS	LOW FLOW		0.17	Jul 11			LU HAJ 14		29	Aug 1	8 1934
ANNUAL	RUNOFF	(AC-FT)		387100			588900			453300		
ANNUAL	RUNOFF	(CFSM)		. 39)			60		.46		
ANNUAL	RUNOFF	(INCHES)		5.34	•		8.	12		6.25	•	
10 PERC	CENT EXC	JEEDS		1190			2080			1360		
ON PERC	CENT EXC	PEAR FLOW PEAK STAGE LOW FLOW (AC-FT) (CFSM) (INCHES) CEEDS CEEDS		35/ 75			494 178			350 108		

108

90 PERCENT EXCEEDS

Occurred on Apr. 20, 1965 and Apr. 13, 1969.

e Estimated.

ELM CREEK BASIN

05287890 ELM CREEK NEAR CHAMPLIN, MN

LOCATION.--Lat 45°09'48", long 93°26'11", in NE\nw\ sec.35, T.120 N., R.22 W., Hennepin County, Hydrologic Unit 07010206, on left bank, 33 ft downstream from bridge on Elm Creek Road, 2.5 mi southwest of Champlin.

DRAINAGE AREA.--84.9 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1978 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 850.71 ft above National Geodetic Vertical Datum of 1929. Prior to March 15, 1979, nonrecording gage at present site and datum.

REMARKS. -- Records good except those for estimated daily discharges, which are fair.

		DISCHAR	GE, CUB	IC FEET PER	SECOND,	WATER Y MEAN	YEAR OCTOBER VALUES	1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.9 2.8 4.4 4.9 6.3	1.7 2.0 2.0 1.8 1.8	1.9 1.9 1.8 1.6	e.78 e.77 e.76 e.75 e.74	e.74 e.74 e.80 e.90 1.2	. 65 . 55 . 43 . 46 . 52	69 60 5 53	65 66 68 83 111	366 363 347 323 293	88 109 134 172 198	36 58 73 78 87	47 42 40 35 31
6 7 8 9 10	5.5 5.4 4.9 4.5 4.1	1.8 1.9 1.9 1.9	1.5 1.5 1.3 1.3	e.74 e.74 e.74 e.74	1.2 1.1 1.2 1.4 1.3	.74 .45 .43 .53	35 33 30	181 232 275 294 283	258 222 186 155 144	196 176 152 129 111	98 105 108 103 92	26 24 58 137 227
11 12 13 14 15	3.7 3.5 3.1 2.7 2.3	1.9 1.7 1.6 1.6	e1.3 e1.4 e1.5 e1.6 e1.6	e.74 e.74 e.74 e.74 e.74	1.2 1.1 e1.1 e1.1	1.2 1.7 2.3 4.2 5.5	26 24 46 73 92	258 227 198 172 149	126 108 93 82 74	98 104 97 88 78	82 74 66 59 53	281 316 328 340 350
16 17 18 19 20	1.8 2.1 2.2 2.1 2.4	1.7 1.6 1.6 1.5	e1.5 e1.5 e1.5 e1.2 e1.1	e.74 e.74 e.74 e.74 e.74	1.0 .93 .92 .79 .78	7.6 8.7 9.5 12 16	108 120 125 124 115	131 122 110 95 82	64 57 53 50 65	71 68 65 64 60	49 47 43 39 36	334 323 303 278 250
21 22 23 24 25	3.1 3.6 4.7 4.1 2.2	1.5 1.5 1.5 1.5 1.5	e.93 e.90 e.88 e.86 e.85	e.74 e.74 e.74 e.74 e.74	e.80 e.80 e.80 e.80 e.80	30 40 91 109 115	103 92 80 69 60	72 65 58 51 44	82 91 91 90 87	56 55 52 49 44	32 29 34 43 51	226 201 176 154 134
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHEST LOWEST LOWEST	30.5 229 1986 1.13 1990 STATISTI TOTAL	12.2 35.9 1986 1.03 1990 CS EAN AN AN	8.66 35.5 1984 .92 1990	.78 .74 .46 .01 .01 .01 FOR WATER YI 4.61 17.2 1984 1991 1990 CALENI 9068.23 24.8	.96 1.4 .69 .53 .01 EARS 197 11.2 99.1 1984 .91 1990 DAR YEAR	61.9 179 1983 5.51 1981	66.4 125 24 3950 .78 .87 1, BY WATER 84.6 221 1986 5.31	54.5 146 1991 4.95 1987 TER YEAR Jun 1 Mar 3	80 72 64 57 50 4193 140 366 8320 1.65 1.84 40.0 140 1991 1.34 1988	32.4 75.1 4.5 545	4 Mar 2 1 Jun 3	116 98 84 74 65 5098 170 350 24 10110 2.00 2.23 31.2 170 1991 1.08 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988
INSTANT INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	ANEOUS PE ANEOUS PE ANEOUS LO RUNOFF (A RUNOFF (I ENT EXCEE ENT EXCEE ENT EXCEE	AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS		.82 225 7.70 17990 .29 3.97 74 7.3 .93	Dec 25 Aug 1 Aug 1		371 8.91 .40 43380 .71 9.58 174 34	Jun 1 Jun 1	5,7,8	.3 597 9.9 .2 23430 .3 5.1 95 8.0 1.2	Mar 2 3 Mar 2 9 Jul 8 7	7 1986 7 1986 9 1989

e Estimated

ELM CREEK BASIN

05287890 ELM CREEK NEAR CHAMPLIN, MN--Continued

WATER QUALITY RECORDS

PERIOD OF RECORD. -- February 1988 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L) (00500)
OCT									
30	1245	2.0	581	8.4	8.0	744	7.6	36	431
FEB							-		
05	1200	1.1	700	7.7	2.0	746	9.5	17	418
MAR									
26	1045	119	451	7.5	3.5	740	9.2	58	305
MAY 01	1300	65	504	7.7	8.0	733	9.2	55	320
07	1345	233	463	7.7 7.9	8.0	/33	9.2	47	304
22	1200	63	488	7.9	20.5	737	5.7	60	311
JUN	1200	03	400	7.5	20.5	/3/	3.7	00	311
14	1230	82	417	7.4	24.0	728	4.5	63	284
JUL				• • •				•	
17	1230	68	395	7.4	27.0	735	4.3	60	
AUG									
27	1200	62	405	7.7	28.5	740	5.5	64	
SEP									
10	0845	219	264	7.2	20.0	745	4.4	52	

DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L) (00505)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)
OCT								
30	311			<0.10	0.02	1.0	0.11	0.06
FEB				••••	•••-			
05	326			<0.10	0.17	0.6	0.05	0.03
MAR								
26	83			1.2	0.43	2.7	0.33	0.20
MAY 01	107	6	•	0.20	0.04	0.9	0.11	0.10
07	107 101	22	6	0.20	0.04	1.3	0.11	0.16
22	122	22	9	0.13	0.13	1.7	0.39	0.39
JUN			•	0.10	0.10	,	0.00	0.00
14	129	26	5	0.15	0.08	1.2	0.59	0.39
JUL								
17		<1	<1	<0.05	0.07	2.2	0.53	0.30
AUG			_					
2 7		13	6	0.08	0.04	1.4	0.32	0.21

ELM CREEK BASIN 05287890 ELM CREEK NEAR CHAMPLIN, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

SAMPLES COLLECTED BY AUTOMATIC SAMPLER

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	PHOS-PHORUS TOTAL (MG/L AS P) (00665)
MAY				
01 05 06 07 08 09 10	1255 0552 1150 1748 2345 1444 2042 0837	65 86 177 246 290 298 272 200	5 3 27 11 10 12 7 8	0.11 0.10 0.19 0.14 0.13 0.14 0.11
15 18	2032	139	19	0.26
JUN	0827	106	11	0.38
14 19 20 21 22 27 30	1235 0903 0142 1821 1100 2018 1651 1127	77 49 62 61 82 88 69 49	26 18 47 19 43 23 22 23	0.59 0.48 0.51 0.46 0.53 0.40 0.49 0.72
01 02 03	0406 1324 0603	80 108 125	81 26 45	0.91 0.59 0.54
SEP 09 10 11 12 15 19 24 27	1100 0339 2018 1257 0536 0012 2045 0039 1154	139 186 241 267 293 342 254 153	76 52 53 27 106 19 14 17	0.74 0.44 0.35 0.33 0.32 0.39 0.27 0.22 0.21

05288500 MISSISSIPPI RIVER NEAR ANOKA, MN

LOCATION.--Lat 45°07'36", long 93°17'48", in SWk sec.12, T.119 N., R.21 W., Hennepin County, Hydrologic Unit 07010206, on right bank 0.4 mi downstream from Coon Creek, 1.3 mi downstream from Coon Rapids, 6.5 mi downstream from Anoka, and at mile 864.8 upstream from Ohio River.

DRAINAGE AREA.--19,100 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1931 to current year. Prior to October 1931 published as "at Coon Rapids, near Anoka." GAGE. -- Water-stage recorder. Datum of gage is 804.53 ft above National Geodetic Vertical Datum of 1929. Prior to June 14, 1932, at site 1.2 mi upstream at different datum.

REMARKS. -- No estimated daily discharges. Records good. Discharge during period of backwater from ice, Dec. 22 to Feb. 5, computed from discharge furnished by Ford Plant Dam downstream from station adjusted for time of travel, leakage through dam, and diversions to St. Paul and Minneapolis water works. Flow slightly regulated by six reservoirs on headwaters; total usable capacity, 1,640,600 acre-ft. Diurnal regulation caused by dam above station above station.

		DISCHA	RGE, CUB	C FEET PER			YEAR OCTOB	ER 1990 TO	SEPTEMBE	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	2780 2640	6850 6620	3010 3280	3170 3100	3220 3060	2620 2610		15600 15700	17900 18000	13000 13900	7480 8510	3770 3960
ร์	3210	6770	3000	3150	3890	2600		16900	19200	15100	9680	4120
4	4070	6540	3350	2940	2960	2570		17700	19300	15800	9260	4460
5	3790	6080	3220	3180	3230	2640	12500	19900	19500	16100	9030	4280
6	3730	5830	3300	3070	2550 2530 2510 2590	2610	11800	21800	19200	15700	8660	3980
7	4230	6290	3700	3000	2530	2590	10900	24700	19200	15600	8390	4360
8	3820	6010	3740	2990	2510	2810		25800	18300	15200	8610	6240
9	4590	5930	3840	3000	2590	2770	10100	27200	17900	14900	8190	9980
10	4620 4730	5820 5260	3380	2960 3050	2540	2740	10000 9870	28100 28800	18000 16000	14200 13400	7720 7170	10400 11400
11 12	4320	5370	3770 3480	3050	2580 3000	2580 2960	9980	28900	15100	14300	7560	13000
13	4410	4910	3370	3060	2870	2930	10700	28100	14300	13300	7190	14500
14	4200	4970	2520	3210	2540 2780 4430 4270	2970	11600	26800	13300	13200	6450	15400
ĨŚ	4060	5240	3150	3030	2780	3050		24800	12400	12500	6610	16800
16	4030	4930	3180	3120	4430	2920	15500	23600	12000	12200	6300	17400
17	4160	5210	3300	3010	4270	3330	16700	22300	11300	11800	6230	17400
18	4720	4840	2790	2870	3420	3390	17400	20600	10200	11300	6150	17300
19	4660	5110	2700	3200	3420	3600		19000	10200	11500	5790	17000
20	5200	4700	2430	2640	3610	4100	19400	17300	10500	10800	5630	16100
21	5250	4860	1790	2840	2990	5180	20000	16400	11300	10800 10300	5300 5440	15200 15000
22 23	6120 7200	4550 4660	1700 3070	3000 2840	2620 2640	6560	20400 19500	15300 14300	10800 10700	9790	5660	14700
23 24	7320	4840	3240	2800	2040	8430 10300	18100	13800	10700	9240	5830	13500
25	7540	4490	3230	2920	2930 3090	11300	16600	13200	10600	8440	5460	13100
26	7580	4580	3110	3170	2760	12900		13200	10800	8290	5440	13100
27	7240	3770	2930	3170	2550	14200		13300	10700	7920	5500	11300
28	7250	4000	3510	2830	2420	15200	14200	14000	10500	8430	5300	10900
29	6960	2970	3200	2 68 0		15800	13500	15400	10900	8090	5020	10600
30 31	7050 7260	2810	3180 3220	2640 2850		15800 16000		16100 16500	10500	7550 7200	4750 4510	9670
			96690			190060		615100	419300	369850	208820	338920
TOTAL MEAN	158740 5121	154810 5160	3119	92540 2985	84000 3000	6131		19840	13980	11930	6736	11300
MAX	7580	6850	3840	3210	4430	16000	20400	28900	19500	16100	9680	17400
MIN	2640	2810	1700	2640	2420	2570		13200	10200	7200	4510	3770
AC-FT	314900	307100	191800	183600	166600	377000	856400	1220000	831700	733600	414200	672200
CFSM	.27	.27	.16	.16	. 16	.32		1.04	.73	.62	.35	. 59
IN.	.31	.30	.19	.18	.16	.37	.84	1.20	.82	.72	.41	. 66
STATIS	TICS OF	MONTHLY ME	EAN DATA	FOR WATER Y	EARS 1931	1 - 199	1, BY WATE	ER YEAR (WY)			
MEAN	6203	5959	4567	4058	3977	6922		14630	11450	8127	5797	5720
MAX	21250	22800	. 10800	8304	9947	23410		39760	29910	21120	22490	23570
(WY)	1987	1972	1972	1986	1966	1966		1986	1943	1952	1972	1986
MIN	1128	1152	1006	935	1079	1602		2796	1646	1022	715	888
(WY)	1937	1937	1935	1935	1933	1940	1959	1934	1934	1934	1934	1934
SUMMAR	Y STATIS	TICS	FOR	1990 CALEN	idar ye ar		FOR 1991	WATER YEAR		WATER Y	EARS 1931	- 1991
	TOTAL			2421040			3160580					
ANNUAL				6633			8659			7904		1006
HIGHES	T ANNUAL	MEAN								17750 1603		1986 1934
FOMEST	ANNUAL I	ME AN		19800	Tun 2/		28900	May 12		1003	Ann	17 1965
LOWEST	DAILY	FAN		1700	Jun 24 Dec 22 Feb 27		- : - : -	Dec 22		602	Sen	10 1934
ANNUAL	SEVEN-D	AUMINIMUN YA	1	2270	Feb 27		1700 2530	Dec 18		646	Aug	26 1934
INSTAN	TANEOUS	PEAK FLOW	-	21000	Jun 24		29300	May 12		91000	Aug Apr	17 1965
INSTAN	TANEOUS	PEAK STAGE	2	19800 1700 2270 21000 9.17 1480a 4802000	7 Jun 24		1700 2530 29300 9. 1480a 6269000	17 May 12		19.5 529a	3 Apr	17 1965 29 1976
INSTAN	TANEOUS	LOW FLOW		1480a	Dec 21		1480	Dec 21		529a	Aug	29 1976
ANNUAL	RUNOFF	(AC-FT)		4802000	_		6269000			5/26000		
ANNUAL	RUNOFF			.35			~ .	. 45 . 16		.4 5.6	T	
	CENT EXC			14400	5		17300	. 10		17300	_	
	CENT EXC			4980			6300			5370		
	CENT EXC			2430			2810			1980		

a Result of regulation.

05288500 MISSISSIPPI RIVER NEAR ANOKA, MN--Continued

WATER-OUALITY RECORDS

LOCATION.--Sediment samples collected at Camden Avenue bridge, in Minneapolis, 7.0 mi downstream from gage.

Tritium samples collected at gage near right bank. Prior to October 1, 1978, sediment samples collected at Lowry Avenue bridge.

DRAINAGE AREA. -- 19,600 mi², approximately.

PERIOD OF RECORD. -- Water years 1963-67, 1975 to current year.

WATER TEMPERATURES: October 1975 to current year.

SUSPENDED SEDIMENT DISCHARGE: August 1975 to current year.

REMARKS.--Sediment samples were collected approximately daily by an observer during the open-water period.

In general, daily concentrations and loads for the open-water period are considered good. During the winter period, daily sediment concentrations and loads are based primarily on concentrations of sediment in samples that were collected monthly and on daily water-discharge records. Sediment records for the winter period are considered fair. Water temperatures were obtained by the observer approximately daily during the open-water period and monthly by U.S. Geological Survey personnel during the winter period. Many temperatures are not published because of questionable values.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURES (water years 1976-77, 1979-80, 1982-91): Maximum daily, 31.0°C, Aug. 25, 26, 1976, July 19, 1977; minimum daily, 0.0°C several days during winter period, each year.

SEDIMENT CONCENTRATIONS: Maximum daily mean, 210 mg/L Apr. 3, 1982; minimum daily mean, 1 mg/L on several days in 1978, 1980, 1981, 1982, and 1984.

SEDIMENT LOADS: Maximum daily, 17,400 tons Apr. 20, 1982; minimum daily, 3.9 tons Feb. 2, 1981.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum daily, 29.0°C, Aug. 29, 30; minimum daily, 0.0°C several days during winter period.
SEDIMENT CONCENTRATION: Maximum daily mean, 92 mg/L, Mar. 27; minimum daily mean, 2 mg/L, Feb. 4.
SEDIMENT LOADS: Maximum daily, 4,040 tons, May 9; minimum daily, 14 tons, Dec. 21, 22.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 ONCE-DAILY

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17.0 18.0 16.0 18.0	12.0 10.0 7.0 7.0 6.0	2.0			.0	6.0 6.0 9.0 10.0 12.0	10.0 10.0 10.0 10.0	22.0 25.0 25.0 23.0 23.0	25.0 25.0 23.0 24.0 23.0	25.0 23.0 22.0 23.0 23.0	25.0 22.0 23.0 24.0 23.0
6 7 8 9 10	15.0 13.0 14.0 13.0	5.0 5.0 4.0 5.0 5.0	3.0		4.0 2.0	1.0 3.0 3.0 4.0	14.0 15.0 10.0 7.0 9.0	8.0 9.0 9.0 12.0 14.0	23.0 22.0 23.0 24.0 24.0	25.0 25.0 25.0 24.0 25.0	21.0 21.0 21.0 21.0	24.0 21.0 22.0 23.0 20.0
11 12 13 14 15	13.0 13.0 11.0 14.0 13.0	5.0 4.0 5.0 8.0 8.0	3.0 2.0 1.0			5.0 3.0 3.0 4.0	8.0 5.0 5.0 6.0 6.0	17.0 19.0 20.0 22.0 22.0	25.0 26.0 25.0 26.0 24.0	25.0 23.0 22.0 25.0 25.0	25.0 25.0 24.0 27.0 25.0	19.0 20.0 21.0 21.0 22.0
16 17 18 19 20	12.0 11.0 8.0 9.0	6.0 5.0 6.0 7.0 6.0				4.0 3.0 4.0 7.0 5.0	6.0 8.0 9.0 10.0 7.0	22.0 18.0 17.0 18.0 19.0	24.0 25.0 25.0 25.0 24.0	28.0 27.0 28.0	24.0 23.0 23.0 25.0 23.0	20.0 19.0 15.0 13.0 14.0
21 22 23 24 25	8.0 9.0 10.0 9.0 8.0	9.0 7.0 4.0				4.0 3.0 1.0 4.0 5.0	10.0 10.0 11.0 12.0 13.0	21.0 22.0 22.0 22.0 21.0	21.0 20.0 22.0 23.0 25.0	27.0 27.0 25.0 24.0	25.0 24.0 21.0 23.0 26.0	14.0 13.0 13.0 13.0 13.0
26 27 28 29 30 31	10.0 8.0 8.0 9.0 10.0	2.0				7.0 3.0 2.0 1.0 4.0	14.0 13.0 15.0 15.0	20.0 23.0 22.0 23.0 23.0 23.0	26.0 27.0 25.0 26.0 26.0	24.0 23.0 20.0 22.0 24.0 25.0	28.0 28.0 28.0 29.0 29.0 26.0	12.0 12.0 12.0 14.0 13.0
MEÁN MAX MIN							9.7 15.0 5.0		24.1 27.0 20.0			18.0 25.0 12.0

05288500 MISSISSIPPI RIVER NEAR ANOKA, MN--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

C	MEAN ONCEN- TRATION MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEM	BER	DECEM	BER	JANUA	RY	FEBRU	ARY	MARCH	H
1 2 3 4 5	5 8 10 8	30 36 69 110 82	19 17 14 11 8	351 304 256 194 131	6 5 5 5	49 53 40 45 43	3 3 3 3 3	26 25 26 24 26	3 3 2 3	26 25 32 16 26	7 7 7 7	50 49 49 49 50
6 7 8 9 10	8 8 8 6 5	81 91 83 74 62	8 10 7 5 4	126 170 114 80 63	5 5 5 5	45 50 50 52 46	3 3 3 3 3	25 24 24 24 24	3 4 5 5	21 27 27 35 34	8 7 5 10 9	56 49 38 75 67
11 12 13 14 15	5 6 6 7	64 70 71 68 77	5 6 7 8 8	71 87 93 107 113	4 5 5 4 4	41 47 45 27 34	3 3 3 3 3	25 25 25 26 25	5 7 6 6	35 40 54 41 45	6 9 6 5	42 72 47 48 41
16 17 18 19 20	7 7 6 5 6	76 79 76 63 84	8 8 8 9	106 113 105 110 114	3 3 3 3 3	26 27 23 22 20	3 3 3 3 3	25 24 23 26 21	7 6 6 6 7	84 69 55 55 68	5 5 8 7 10	39 45 73 68 111
21 22 23 24 25	6 6 13 23 37	85 99 253 455 753	10 9 7 6 5	131 111 88 78 61	3 3 3 3	14 14 25 26 26	3 3 3 3 3	23 24 23 23 24	6 6 7 7	48 42 43 55 58	28 39 63 67 64	392 691 1430 1860 1950
26 27 28 29 30 31	57 41 28 17 16 19	1170 801 548 319 305 372	4 4 5 5	49 41 43 40 38	3 3 3 3 3 3	25 24 28 26 26 26	3 3 3 3 3	26 26 23 22 21 23	6 6 	45 41 39	63 92 88 56 49 43	2190 3530 3610 2390 2090 1860
TOTAL	***	6606		3488		1045		751		1186		23111
	APR:		MAY	1050	JUN:		JUL		AUGU		SEPTEM	
1 2 3 4 5	34 26 25 24 24	1410 1030 931 823 810	25 19 26 26 36	1050 805 1190 1240 1930	75 47 38 33 32	3620 2280 1970 1720 1680	76 44 38 38 35	2670 1650 1550 1620 1520	16 31 32 26 22	323 712 836 650 536	17 18 21 22 22	173 192 234 265 254
6 7 8 9 10	21 23 26 20 15	669 677 737 545 405	45 51 55 55 53	2650 3400 3830 4040 4020	34 29 26 27 30	1760 1500 1280 1300 1460	35 30 29 28 26	1480 1260 1190 1130 997	21 20 21 18 17	491 453 488 398 354	19 29 87 68 62	204 341 1470 1830 1740
11 12 13 14 15	15 15 19 19 26	400 404 549 595 969	49 46 44 35 29	3810 3590 3340 2530 1940	31 33 30 24 22	1340 1350 1160 862 737	26 27 26 24 22	941 1040 934 855 742	16 15 16 14 16	310 306 311 244 286	64 74 80 67 63	1970 2600 3130 2790 2860
16 17 18 19 20	29 30 32 36 40	1210 1350 1500 1800 2100	29 29 39 34 29	1850 1750 2170 1740 1350	26 25 26 26 29	842 763 716 716 822	21 25 22 24 25	692 796 671 745 729	19 16 15 14 13	323 269 249 219 198	61 45 37 34 26	2870 2110 1730 1560 1130
21 22 23 24 25	42 42 37 27 26	2270 2310 1950 1320 1170	23 22 21 21 21	1020 909 811 782 748	36 41 31 30 33	1100 1200 896 867 944	25 22 21 21 21	729 612 555 524 479	15 16 33 20 16	215 235 504 315 236	23 22 22 18 20	944 891 873 656 707
26 27 28 29 30 31	24 22 23 27 26	978 849 882 984 997	23 27 43 50 46 80	820 970 1630 2080 2000 3560	26 29 29 31 29	758 838 822 912 822	20 19 19 14 13	448 406 432 306 265 292	14 16 15 16 15	206 238 215 217 192 231	34 21 14 14 11	1200 641 412 401 287
TOTAL YEAR		32624 244888		63555		37037		2 8260		10760		36465

05290000 LITTLE MINNESOTA RIVER NEAR PEEVER, SD

LOCATION.--Lat 45°36'05", long 96°52'18", in SWk sec.13, T.125 N., R.50 W., Roberts County, Hydrologic Unit 07020001, on Sisseton Indian Reservation, on right bank 2 mi northwest of town of Browns Valley, MN, 5.3 mi northeast of Peever, 7.2 mi downstream from Jorgenson River, and 8 mi upstream from Big Stone Lake.

DRAINAGE AREA.--447 mi².

PERIOD OF RECORD.--October 1939 to September 1981, October 1989 to current year.

REVISED RECORDS.--WSP 1308: 1943(M).

GAGE.--Water-stage recorder. Datum of gage is 1,002.20 ft above National Geodetic Vertical Datum of 1929.

Oct. 1, 1939, to Mar. 20. 1940, nonrecording gage at site 4.5 mi downstream at different datum. Mar. 21 to Apr. 12, 1940, nonrecording gage at site 100 ft downstream at present datum. April 13 to Aug. 27, 1940, nonrecording gage at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft³/s and maximum (*):

Date	Tim		ischarge (ft ³ /s)	Gage hei (ft)	ght		Date	Time	Di (scharge ft ³ /s)	Gage heigh (ft)	t
June 22 July 4	093 130		*891 513	*5.77 4.78			July 23 July 28	1130 2400		548 639	4.87 5.09	
		DISCH	ARGE, CUI	BIC FEET PE		WATER Y MEAN		ER 1990 TO	SEPTEME	ER 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		MAY	JUN	JUL	AUG	SEP
1 2	. 19 . 22	. 58 . 58	.62 .60	.49 .42	e.74 .75	. 59 . 55	12 11	35 50	56 56	431 486	247 222	17 16
3	.31	. 57	.59	. 42	1.0	. 55	10	43	56	436	304	14
4	.28	. 58	.63	e. 45	.99	1.5	10	63	75 204	500	230	13
5 6	.23 .34	. 57 . 68	.67 .67	. 49 . 51	.84 .83	1.8 1.9	10 11	128 113	356	485 437	175 149	12 11
7	.37	.66	.72	e.50	.72	3.9	11	96	263	388	134	10
8 9	.35 .35	.94 .82	.71 .71	.39 .43	.72 .68	4.0 33	10 9.7	87 71	235 186	332 281	127 127	11 21
10	.35	.62	.77	e.60	.65	38	9.2	60	155	238	112	109
11 12	.38	.61	.74 .74	e.60 .65	.61	25	8.8	51 45	128 101	210 196	96 83	8 5 52
13	.38 .38	.63 .56	.70	.67	.63 .64	18 13	11 15	39	82	184	73	32 44
14	.39	. 57	.68	.71	.69	15	23	34	69	167	66	43
15 16	. 42 . 44	. 56 . 51	.76 .69	.76 .76	. 75 . 58	14 16	35 41	32 27	63 58	147 126	60 56	55 57
17	. 70	. 48	.6 9	.77	.55	15	41	24	53	111	52	45
18 19	.62	. 49	.67	.71 .83	. 59 . 58	14 17	33 27	22 20	46 40	135 136	49 44	39 34
20	. 58 . 54	.51 .59	.73 .78	. 91	.60	46	22	20 16	49	121	42	30
21	. 52	. 59	.72	.84	. 85	83	18	13	204	114	41	27
22 23	. 55 . 58	. 59 . 59	.66 .61	. 84 . 83	.74 .65	99 69	16 14	11 9.9	712 399	207 485	· 39	25 22
24	.55	.60	.86	.77	.67	42	13	8.4	295	230	34	20
25 26	. 58 . 75	. 54 . 61	.79 .60	. 76 . 5 7	.70 .60	35 36	11 10	6.7 5.7	258 231	169 145	35 31	18 17
27	.56	.62	.62	.46	.58	36	10	5.3	233	206	27	17
28	. 49	. 59	.78	. 56	.60	27	9.7	5.1	259	536	23	16
29 30	. 51 . 53	. 59 . 59	.63	. 58 . 58		22 19	12 18	8.8 8.9	299 310	532 375	21 19	15 14
31	. 53		.41 .32	e.72		15		25		303	18	
TOTAL MEAN	13.97 .45	18.02 .60	20.87 .67	19.58 .63	19.53 .70	761.79 24.6		1163.8 37.5	5531 184	8849 285	2773 89.5	909 30.3
MAX	.75	.94	.86	.91	i.0	99		128	712	536	304	109
MIN	.19	. 48	.32	.39	.55	.55		5.1	40	111	18	10
AC-FT CFSM	.00	36 .00	41 .00	39 .00	.00	1510 .05	977 .04	2310 .08	10970 .41	17550 .64	5500 .20	1800 .07
IN.	.00	.00	.00	.00	.00	.06	.04	.10	. 46	.74	. 23	.08
STATISI MEAN	TICS OF MO 76.9	NTHLY MI 25.6	EAN DATA 32.7	FOR WATER 12.7	YEARS 194 62.6	0 - 199: 201	1, BY WATER 263	YEAR (WY) 92.4	90.7	38.1	15.3	10.0
MAX	333	98.3	135	52.3	268	573	1321	472	355	285	89.5	34.7
(WY) MIN	1961 .21	1961 . 25	1961 .10	1961 .000	1961 .000	1943 .51	1952 2.89	1942 2.20	1942 .41	1991 .041	1991 .059	1961 .074
(WY)	1940	1940	1940	1940	1940	1956		1981	1976	1976	1976	1976
	STATISTI	CS	FOR	R 1990 CALE		1	FOR 1991 W			WATER	YEARS 1940	- 1991
ANNUAL ANNUAL				2218.1 6.0			20571.9 56.4			43.	0a	
HIGHEST	C ANNUAL M									153		1962
	ANNUAL ME DAILY ME			173	Mar 1	2	712	Jun 22		4400	37 Apr	1981 8 1952
	DAILY MEA			.1			.1	19 Oct 1				1 1940
ANNUAL	SEVEN-DAY	MINIMUN	1	.2 339			. 2 891	28 Oct 1 Jun 22		4730		1 1940 8 1952
	TANEOUS PE				Mar 1 12b Mar 1		5.7					8 1952 5 1943
INSTANI	CANEOUS LO	W FLOW	_		12 Sep 3		.1					3.•
ANNUAL	RUNOFF (A	C-FT) FSM)		4400	14		40800 .1	13		31140	096	
ANNUAL	RUNOFF (I	NCHES)		.1			1.7			1.	31	
	ENT EXCEE			13			204			92 2.	5	
	CENT EXCEE CENT EXCEE			.6 .3			11 .5	53			30	

Median of annual mean discharges is 32 ${\rm ft}^3/{\rm s}$. Backwater from ice. From floodmark (backwater from ice).

Estimated.

05291000 WHETSTONE RIVER NEAR BIG STONE CITY, SD

LOCATION.--Lat 45°17'32", long 96°29'14", in SEXNW% sec.18, T.121 N., R.46 W., Grant County, Hydrologic Unit 07020001, on right bank 20 ft downstream from former highway bridge site, 1.5 mi west of Big Stone City, and 4.5 mi upstream from Big Stone Lake.

DRAINAGE AREA.--389 mi².

PERIOD OF RECORD.--March 1910 to November 1912 (no winter records), and March 1931 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 895: Drainage area. WSP 1308: 1932(M), 1935(M).

GAGE.--Water-stage recorder. Datum of gage is 996.96 ft adjustment of 1912. Mar. 8, 1910, to Nov. 30, 1912, nonrecording gage 2 mi downstream at different datum. Mar. 18, 1931, to May 3, 1939, nonrecording gage, at site 20 ft upstream at present datum. May 4, 1939, to Nov. 8, 1952, water-stage recorder at site 80 ft downstream at present datum.

stream at present datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, about 26 ft in June 1919, present site and datum, from information by local resident, discharge 29,000 ft³/s.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 200 ft³/s and maximum (*):

EXTREMES	FOR CURRE	NT YEAR.	Peak	discharges	greater t	han base	discharge	of 200 f	t ³ /s and	maximum	(*):	
Date	Time	D1S	charge t ³ /s)	Gage heig (ft)	ht		Doto	Time	D1S	charge t ³ /s)	Gage height (ft)	
June 5	2130	(1	937	6.57			Date Aug. 3	1100	*	3270	*10.40	
June 22	1215		633	5.54			Aug. 9	0430		633	5.36	
July 2	0215	. 2	070	8.68			Sep. 11	0930		270	3.91	
July 23	0600		777	5.84			_		_			
			-	IC FEET PER	DAILY	MEAN VA	AR OCTOBER LUES					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.1	2.6	3.7	e3.8	e3.8	e5.8	15	24	95	810	307	47
2 3	2.3 3.3	2.4 2.5	3.8	e3.8 e3.8	e3.8 e3.8	e6.0 e6.4	14 13	34 35	126 96	1510 659	927 2720	39 34
4	3.4	2.4	3.8 3.8	e3.8	e3.8	e6.7	13	36	170	369	1420	31
5	5.5	2.5	3.9	e3.8	e3.8	e7.0	13	41	734	e250	627	26
6	3.3	2.5	4.2	e3.8	e3.9	e7.4	13	55	812	e200	365	24
7	4.5	2.5	4.5	e3.8	e3.9	e7.7	13	52	572	e160	30 7	25
8	3.5	2.5	4.6	e3.8	e3.9	e8.1	13	41	367	e125	440	35
9	2.5	3.2	4.4	e3.8	e3.9	e8.6	14	36	e233	e100	580	38
10 11	2.4 2.4	3.2 3.3	4.3 4.3	e3.8 e3.8	e3.9 e4.0	e9.3 e9.8	13 12	31 28	e180 e140	e80 e62	371 e290	146 256
12	2.4	3.3	4.2	e3.8	e4.0	e10	15	24	e115	e54	e220	148
13	2.4	3.9	e4.2	e3.8	e4.0	e11	20	21	e95	e47	e180	84
14	2.4	3.9	e4.2	e3.8	e4.1	e12	32	18	e84	e38	e150	69
15	2.5	5.2	e4.2	e3.8	e4.1	e13	49	17	e81	e34	e130	67
16	2.8	4.7	e4.2	e3.8	e4.2	e14	48	44	e75	e29	e110	70
17	4.0	4.8	e4.2	e3.8	e4.2	e15	48	38	e63	e25 e22	e98	59
18 19	4.7 3.9	4.3 3.9	e4.2 e4.2	e3.8 e3.8	e4.3 e4.4	e16 e22	40 33	33 . 33	e53 e49	21	e80 72	50 4 5
20	4.1	4.2	e4.2	e3.8	e4.5	e30	26	24	e56	19	70	40
21	4.4	4.1	4.2	e3.8	e4.6	e46	22	18	e260	27	67	36
22	3.6	3.9	e4.2	e3.8	e4.7	e55	19	15	569	539	65	32
23	3.0	3.4	e4.2	e3.8	e4.8	e64	17	13	486	734	60	30
24	2.7	3.5	e4.2	e3.8	e4.9	e51	16	11	314	662	57	30
25 26	2.5 2.5	3.2 3.1	e4.1 e4.1	e3.8 e3.8	e5.0 e5.2	e34 e29	14 13	9.2 7.7	275 277	400 300	55 54	27 25
27	2.6	3.4	e4.0	e3.8	e5.4	e24	15	7.3	279	307	47	24
28	2.5	3.2	e3.9	e3.8	e5.6	e21	14	9.9	281	429	40 .	23
29	2.7	3.2	e3.9	e3.8		e20	15	22	284	456	80	22
30	3.3	3.5	e3.9	e3.8		17	20	33	312	363	98	21
31	2.7		e3.9	e3.8		16		81	7500	302	64	1000
TOTAL MEAN	96.9 3 3.13	102.3 3.41	127.7 4.12	117.8 3.80	120.5 4.30	602.8 19.4	622 20,7	892.1 28.8	7533 251	9133 295	10151 327	1603 53.4
MAX	5.5	5.2	4.6	3.8	5.6	64	49	81	812	1510	2720	256
MIN	2.1	2.4	3.7	3.8	3.8	5.8	12	7.3	49	19	40	21
AC-FT	192	203	253	234	239	1200	1230	1770	14940	18120	20130	3180
CFSM	.01	.01	.01	.01	.01	.05	.05	.07	. 65	.76	. 84	. 14
IN.	.01	.01	.01	.01	.01	.06	.06	.09	.72	. 87	. 97	.15
MEAN	8.81	10.3	7.02	FOR WATER Y 4.49	10.0	145	BY WATER 180	79.9	73.5	34.9	16.0	8.10
MAX	70.5	78.3	43.3	20.5	118	612	1386	491	478	454	327	65.7
(WY)	1958	1972	1972	1987	1984	1978	1952	1972	1984	1962	1991	1942
MIN	. 60	.40	.20	.000	.000	2.85	3.63	.77	1.42	.035	.000	. 36
(WY)	1932	1935	1935	1934	1934	1969	1934	1934	1936	1934	1934	1935
ANNUAL	STATISTICS	Š	FOR	1990 CALEN 3009.09		F	OR 1991 WA 31102.1	TER YEAR		WATER	YEARS 1910 -	1991
ANNUAL				8.24			85.2			49.3	7 16	
	ANNUAL MEA	AN		0.24			03.2			181		1986
LOWEST	ANNUAL MEAN	N								1.		1934
	DAILY MEAN	N		217	Mar 14		2720	Aug 3		6090		1969
LOWEST	DAILY MEAN	ATMTLEN.		.29			2.1	Oct 1		. !	00c	1022
ANNUAL	SEVEN-DAY N ANEOUS PEAR	TUTMOM		.42 268	Aug 10 Mar 14		2.4 3270	Oct 9 Aug 3		6870	00 Jul 31 Apr 8	
	ANEOUS PEAR				a Mar 14		10.40			14.		1969
	ANEOUS LOW				Aug 13,	14	2.0	Oct 1			p. v	
ANNUAL	RUNOFF (AC-	-FT)		5970			61690			35970		
	RUNOFF (CFS			.02	1		.22				13	
	RUNOFF (INC			. 29	ı		2.97			1.	/3	
	ENT EXCEEDS			16 4.0			278 14			87 6.0	s.	
	ENT EXCEEDS			1.5			3.3			1.		
		-									-	

Backwater from ice.

b Mediam of annual mean discharges is 35 ft³/s. c No flow at times in most years.

d From floodmark.

Estimated.

05291500 BIG STONE LAKE NEAR BIG STONE CITY, SD (formerly published as Big Stone Lake at Ortonville)

LOCATION.--Lat 45°18'32", long 96°28'04", in NE½NW½ sec.8, T.121 N., R.46 W., Grant County, Hydrologic Unit 07020001, at new powerplant intake, 1.2 mi north of Big Stone City, SD, 1.2 mi northwest of concrete dam at outlet, and 1.0 mi west of Ortonville. Prior to January 1989, at old powerplant site at west edge of Ortonville.

PERIOD OF RECORD, -- March 1937 to current year.

- GAGE.--Nonrecording gage read once a day. Datum of gage is 957.69 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 17, 1947, nonrecording gage at site 1.2 mi southeast at same datum. Sept. 18, 1947, to June 30, 1963, water-stage recorder at site 1.2 mi southeast at same datum. Sept. 21, 1959, to June 30, 1963, supplementary nonrecording gage read once daily, at site 0.9 mi southeast at same datum. July 1, 1963 to Jan. 1989 nonrecording gage at site 0.9 mi southeast at same datum.
- REMARKS.--Natural lake with concrete dam at outlet. Dam was rebuilt and completed in Nov. 1985, with the following changes: Eight 7 ft high by 10 ft wide electrically operated slide gates, one 48 in. by 48 in. gate; and one 18 in. sluice gate; sills of all gates are at 3.0 ft. Silt barrier dam 700 ft upstream in outlet channel of lake completed July 7, 1958; rebuilt and completed Dec. 1986 with the new crest at 7.0 ft (previous crest was at 5.9 ft). Supplementary nonrecording gage readings used for stages below crest of silt barrier to June 30, 1963. Water level subject to fluctuation caused by wind action.
- EXTREMES FOR PERIOD OF RECORD. --Maximum gage height, 12.73 ft, Apr. 17, 1952; minimum observed, 3.53 ft, Mar. 2, 1957 (strong upstream wind in channel). Minimum observations of 3.10 ft, Mar. 2, 1940, and 2.20 ft, Nov. 20, 1940, at spillway site are the result of blockage of channel to spillway by ice and snow and do not represent lake elevations.
- EXTREMES FOR CURRENT YEAR. -- Maximum gage height observed, 8.28 ft, Aug. 4; minimum observed, 6.09 ft, Apr. 26.

GAGE HEIGHT, IN FEET, OCTOBER 1990 TO SEPTEMBER 1991

Oct. 31 6.48	Feb. 28 6.70	June 30 7.90
Nov. 30 6.48	Mar. 31 7.00	July 31 8.00
Dec. 31 6.54	Apr. 30 7.04	Aug. 31 7.84
Jan. 31 6.57	May 31 7.35	Sept. 30 7.70

NOTE. -- Gage-height record other than that shown above is available in the District office.

05292000 MINNESOTA RIVER AT ORTONVILLE, MN

LOCATION.--Lat 45°17'44", long 96°26'38", in NE½NW½ sec.16, T.121 N., R.46 W., Big Stone County, Hydrologic Unit 07020001, on left bank 400 ft downstream from bridge on U.S. Highway 12 and 1,300 ft downstream from dam at outlet of Big Stone Lake, at Ortonville.

DRAINAGE AREA. -- 1,160 mi², approximately.

PERIOD OF RECORD. -- February 1938 to current year.

REVISED RECORDS.--WSP 895: 1939. WSP 1508: 1942 (yearly mean).

GAGE.--Water-stage recorder. Datum of gage is 956.38 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 31, 1939, nonrecording gage on downstream side of dam 1,300 ft upstream at datum 1.31 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Some regulation by Big Stone Lake (station 05291500). DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

		DISCHARG	E, CUB	IC PEEL PER	DAILY	MEAN VA	LUES	1990 10	SEPTEMBE	K 1991		
DAY	OCT	NOV	DEC	JAN e2.54422.3 e2.33 e2.33 e2.33 e2.33 e2.32 e2.32 e2.55 e2.677522.22 22.586 e2.64422.22 73.9	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.4	3.8	4.6	e2.5	2.2	2.2	16	49	104	1500	716	90
2	3.5	3.3	4.3	2.4	2.2	2.4	15	47	129	1790	1220	90
3	4.6	3.3	4.3	2.4	2.2	2.5	14	46	170	1410	1670	92
4	4.3	3.1	4.3	2.5	2.2	2.6	14	47	301	1050	1700	60 -
5	4.4	3.1	4.6	2.3	2.2	3.1	14	48	693	849	1120	29
6 7	5.0	2.0	4.0	2.3	2.2	2.4	14	3/ 62	920 915	601	838 8 6 3	28 29
8	4.7	2.8	3.6	62.3	2.2	2.2	11	56	792	572	948	29
ğ	4.6	2.6	3.1	e2.3	2.2	2.2	8.2	38	781	553	1030	57
10	4.4	2.5	2.8	e2.3	2.2	2.5	8.0	38	765	536	825	56
11	3.9	2.4	2.8	e2.3	2.2	2.7	8.3	40	504	382	657	47
12	4.0	2.5	2.5	e2.3	2.2	2.3	9.6	41	144	318	253	63
13	3.7	2.7	2.6	e2.3	2.2	2.2	9.7	42	96	386	185	56
14 15	3.6	2.5	2./	e2.5	1./	2.1	8.7	43	78	312	217 215	56 56
16	3.8	2.4	2.0	2.0	1.0	2.4	8.2	42	68	70 64	160	57
17	4.4	3.2	2.7	2.7	1.9	2.4	8.1	38	65	65	92	57
18	4.4	3.1	3.0	2.5	1.9	2.5	8.1	37	64	65	93	57
19	4.7	3.2	2.8	2.2	1.9	2.6	8.1	36	61	65	90	53
20	4.1	3.4	2.7	1.9	1.9	4.7	17	35	130	65	89	51
21	4.0	3.1	2.4	2.5	2.3	7.9	20	37	365	66	92 93 90 89 90 89	51
22	4.0	2.8	e2.5	2.3	2.2	11	22	43	904	899	89	54
23 24	3.8	2.5	e2.5	2.2	1.9	1/	21 15	43	901	1280	88 91	51 51
2 9 25	9.0	3.1	e2.5	2.5	2.0	40	7.6	43 37	610	808 881	90	154
26	3.5	3.6	e2.5	2.6	2.2	31	7.9	37	374	290	88	372
27	3.6	4.0	e2.5	2.4	2.2	29	9.0	33	535	470	88	352
28	4.2	4.0	e2.5	2.4	2.2	29	7.7	33	721	839	87	299
29	3.9	4.3	e2.5	2.2		28	10	31	898	801	100	156
30	4.0	4.6	e2.5	2.2		19	29	32	900	715	95	98
31	4.2		e2.5	2.2		16		5/		/0/	92	
TOTAL	128.6	94.1	95.0	73.9 2.38 2.8 1.9 147 .00	58.8	311.1	372.0	1312	13750	19158	13979	2751
MEAN	4.15	3.14	3.06	2.38	2.10	10.0	12.4	42.3	458	618	451	91.7
MAX	6.0	4.6	4.6	2.8	2.3	40	29	62	926	1790	1700	372
MIN_	3.4	2.4	2.4	1.9	1.7	2.1	7.6	31	61	64	87	28
AC-FT	255	187	188	147	117	617	738	2600	27270	38000	27730	5460
CFSM IN.	.00	.00	.00	.00	.00	.01	.01	.04	.40	. 53 . 61	.39	.08
IN.	.00	.00	.00	.00	.00	.01	.01	.04		.01	.43	.09
STATIST	CICS OF MC	ONTHLY MEAN	DATA	FOR WATER YE	EARS 1938	- 1991,	BY WATER	YEAR (WY)	1			
MEAN	19.5	15.6	16.3	17.3	21.9	146	414	235	181	113	51.2	30.2
MAX	186	166	194	164	150	731	2195	887	1034	915	451	250
(WY)	1987	1943	1943	1943	1943	1986	1952	1986	1962	1962	1991	1942
MIN	.20	166 1943 .20 1939	.20	.17	.16	1.14	1.27	.91	1.30 1977	1.11 1977	.25 1959	.18 1988
(WY)	1939			1940	21.9 150 1943 .16 1940	1941	1941	1941				
SUMMARY ANNUAL	STATIST	ics .	FOR	1990 CALENI 4493.27	AR YEAR	F	OR 1991 WA: 52083.5	TER YEAR		WATER Y	EARS 1938 -	- 1991
ANNUAL		Æ A VI		12.3						106a		1986
	ANNUAL M									2 3	۵	1977
	DAILY ME			202	Mar 15		1790	Jul 2		3050	Apr 13	
					Aug 16		1.7	Feb 14		.0	0 Dec 13	3 1940
ANNUAL	SEVEN-DAY	MINIMUM		1.1	Aug 16 Aug 11		1.9	Feb 14		.0	8 Sep 12	2 1988
INSTANI	CANEOUS PI	EAK FLOW_		257	Aug 19		1880	Jul 2		3060	Apr 1	
INSTANI	ANEOUS PI	LAK STAGE		.97 1.1 257 4.02 .84 8910	Aug 19		1790 1.7 1.9 1880 8.95 1.5 103300	Jul 2		12.9	2 Apr 1:	1952
ANNITAN	ANEOUS LO	JW FLUW		. 84 8010	Aug 17		103300	ren 24		77020		
ANNIIAI	RUNOFF (CFSM)		.011	1		. 12			, 7, 020 . O:	92	
	RUNOFF (.14	-		1.67				5	
10 PERC	ENT EXCE	EDS		22			671			280		
	ENT EXCE			5.7			8.7			14		
90 PERC	CENT EXCE	EUS		2.7			2.2			1.0		

a Median of annual mean discharges is 80 ft^3/s . e Estimated.

MINNESOTA RIVER BASIN

05293000 YELLOW BANK RIVER NEAR ODESSA, MN

LOCATION.--Lat 45°13'35", long 96°21'12", in SE\sE\sec.1, T.120 N., R.46 W., Lac qui Parle County, Hydrologic Unit 07020001, on left bank 150 ft downstream from highway bridge, 2.5 mi southwest of Odessa, and 4.5 mi upstream from mouth, DRAINAGE AREA.--398 mi².

PERIOD OF RECORD.--October 1939 to current year.

REVISED RECORDS.--WSP 1388: 1947(M), 1950.

GAGE.--Water-stage recorder. Datum of gage is 953.34 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark). Prior to Aug. 28, 1940, nonrecording gage at site 150 ft upstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft³/s and maximum (*):

Date	Time	Di e (ischarge (ft ³ /s)	Gage he			Date	Time	9	ischarge (ft ³ /s)	Gage he	
June 5 June 23 July 2	020 023 160	0	1190 1630 1070	9.0 *10.3 8.2	30		July 22 Aug 4 Aug 9	1430 0330 1630)	495 *2010 659	6.07 10.20 6.24)
		DISCHAF	RGE, CUBIC	FEET PER	SECOND DAI	, WATER YI LY MEAN VA	EAR OCTOBER ALUES	1990 TO 5	SEPTEMBE	TR 1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 TOTAL MEAN MIN AC-FI TOTS MIN AC-FI MIN MIN MIN MIN MIN MIN MIN MIN MIN MI	1.8741111334545558954535532421224499741101	2.1 2.0 1.8 1.9 1.4 1.0 1.2 1.3 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.1	e1.0 e1.0 e1.0 e1.0 e1.0 e1.0 e1.0 e1.0	e.34 e.30 e.28 e.25 e.225 e.221 e.20 e.18 e.17 e.16 e.16 e.16 e.16 e.16 e.16 e.16 e.16	e.16 e.17 e.17 e.17 e.17 e.18 e.18 e.18 e.19 e.20 e.212 e.225 e.27 e.325 e.344 e.552 e.344 e.562 7.300 .262 .16 .000	e.75 e.90 e1.0 e1.3 e1.4 e1.7 e2.0 e2.3 e2.8 e3.2 e3.7 e4.4 e5.1 e5.8 e6.4 e8.0 e10 e16 e25 e35 e88 e126 e110 e73 e52 e36 e37 e33 29 757.85 1500 .06	25 22 21 19 19 19 18 16 14 18 22 39 40 35 30 26 19 16 13 14 18 21 12 13 14 14 15 16 16 17 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	20 22 30 36 33 31 36 33 30 28 27 24 21 21 49 49 22 21 16 18 58 176 45.27 410 45.27 49 1410 45.27 16 28 10 11 11 11 11 11 11 11 11 11 11 11 11	295 324 327 974 975 452 203 104 992 560 1060 1454 483 11837 1456 23480 11837 1456 23480 11837 1456 23480 11837 1456 11837 1456 1560 1660 1660 1660 1660 1660 1660 16	482 876 587 263 158 105 72 53 42 23 24 23 21 17 15 12 11 9.1 338 242 235 145 876 9.1 102 4479.2 4479.2 4479.2 102 4479.3 102 4479.3 103 104 104 104 104 105 106 106 106 106 106 106 106 106 106 106	89 314 1010 1750 937 498 360 356 569 523 370 266 204 174 149 132 120 109 102 93 85 77 70 63 57 53 47 42 40 31 8725 281 1750 31 17310 .71 .82	30 28 26 24 22 21 22 22 22 21 24 24 23 22 20 19 18 17 16 15 14 13 13 11 11 11 11 11 11 11 11 11 11 11
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL TANNUAL TO HIGHEST LOWEST ANNUAL TANNUAL TANN	12.7 104 1985 .31 1941 STATISTIO	16.3 201 1972 .44 1977 CS EAN AN MINIMUM AK FLOW AK STAGE C-FT) FSM) NCHES) DS	8.53 66.8 1972 .32 1977	4.67 19.7 1986 .090 1977 1990 CALENI 2792.05 7.65	10.1 117 1984 .001 1977 DAR YEA Mar 1 Aug 1 Aug Mar 1	150 653 1986 1.59 1965 R	PY WATER 1 233 1341 1952 9.13 1981 FOR 1991 WATER 2 78.2 1750 .15 .16 2010 10.30 56610 .20 2.67 238 13 .20	94.3 652 1972 2.94 1981 TER YEAR Aug 4 Jan 25 Jan 20 Aug 4	90.7 496 1984 1.83 1976	42.5 375 1962 .27 1976 WATER YI 58.44 225 3.98 6640 .00 6970 19.07 42340 120 8.3 .90	Apr 9 Db Jan 20 Apr 9 Apr 9 John 10 Apr 9 John 10 John 10	1986 1981 9 1969 6 1940 9 1969

Median of annual mean discharges is 47 ft3/s.

b Many days in several years. c Backwater from ice. d From floodmark. b

Discharge Gage height

MINNESOTA RIVER BASIN

05294000 POMME DE TERRE RIVER AT APPLETON, MN

LOCATION.--Lat 45°12'10", long 96°01'20", in SWkNWk sec.14, T.120 N., R.43 W., Swift County, Hydrologic Unit 07020002, on left bank 60 ft upstream from bridge on U.S. Highway 59 and State Highway 119 at Appleton and

Discharge Gage height

07020002, on left bank 50 ft upstream from bridge on U.S. Highway 59 and State Highway 119 at Appleton and 8 mi upstream from mouth.

DRAINACE AREA. --905 mi², approximately.

PERIOD OF RECORD. --March 1931 to September 1935 (no winter records), October 1935 to current year. Prior to October 1953, published as "near Appleton."

REVISED RECORDS. --WSP 1308: 1931(M), 1937(M).

GAGE. --Water-stage recorder and concrete control. Datum of gage is 978.00 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 22, 1952, nonrecording gage at site 4 mi upstream at datum 25.17 ft higher.

REMARKS. --Records good. Flow affected by lakes above station. Occasional regulation at low flow by old milldam 500 ft upstream. 500 ft upstream.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft³/s and maximum (*):

Date	Tim	e (:	scharge ft ³ /s)	Gage heig (ft)	ght		Date	9	Time	Discharge (ft ³ /s)	Gage h	
Jun 2 Jul 2	150 Unkn		244 226	5.50 5.44			Jul 1 Aug		Unknown 0815	232 *320	5.41 *5.7	
		DISCHAR	GE, CUBI	C FEET PER		WATER YEA MEAN VA		R 1990 I	O SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.7	14	17	5.6	9.5	23	162	155	200	196	158	75
2 3	11 25	13 14	16 16	5.9	9.8 10	23 23	157 137	169 162	236 213	223 223	287 309	73 70
4	23 22	14	16	6.1 5.6	12	23 24	137	161	188	199	259	. 67
5	20	20	16	5.1	14	25	123	177	175	199	212	64
6	17	15	16	4.9	ĨŚ	25	119	176	172	196	180	64
7	15	14	18	4.7	17	26	119	174	162	e198	164	80
8	13	14	20	4.5	18	27	118	173	153	199	158	89
9	13	15	20	4.6	19	29	116	162	150	202	153	105
10 11	13 9.8	15 17	20 21	4.6 4.8	21 22	30 32	114 111	162 160	166 178	202 202	143 135	117 120
12	11	18	22	5.1	22	35	114	153	165	223	130	116
13	11	19	17	5.5	22	33	124	149	153	e223	126	119
14	10	19	21	6.4	22	35	140	149	147	223	124	129
15	11	19	20	7.1	21	37	158	150	148	229	121	136
16	11	20	20	7.7	21	37	163	147	171	217	118	141
17	12	19	21	8.4	21	39	158	159	172	199	114	145
18	18	19	19	9.2	21 21	43	148	149	143 127	188	109	147 148
19 20	24 24	19 19	18 16	10 10	21	49 57	141 135	138 126	125	185 e185	104 101	145
21	21	20	15	9.7	22	64	131	118	165	e185	99	141
22	21	19	12	9.7	22	71	126	113	172	180	97	131
23	20	20	īī	9.7	23	40	123	110	160	169	95	122
24	18	19	11	9.4	23	49	120	108	148	158	95	117
25	16	18	9.4	9.2	23	75	117	108	143	149	96	113
26	16	18	8.5	9.2	23	99	110	108	143	141	88	107
27 28	15 16	20 20	7.6	9.4 9.5	23 23	164 145	113 110	109 115	146 157	158 157	85 83	103 101
29	15	19	8.0 8.4	9.6	23 	145	123	160	163	156	82	93
30	16	18	7.4	9.6		147	130	205	179	144	79	87
31	16		5.9	9.5		161		180	===	136	77	
TOTAL	487.5	527	474.2	230.3	541.3	1812	3890	4585	4920	5844	4181	3265
MEAN	15.7	17,6	15.3	7.43	19.3	58.5	130	148	164	189	135	109
MAX	25	20	_22	10	23	164	163	205	236	229	309	148
MIN	6.7 967	13	5.9	4.5	9.5	23 3590	110	108 9090	125 9760	136 11590	77 8290	64 6480
AC-FT CFSM	.02	1050 .02	941 .02	457 .01	1070 .02	.06	7720 .14	.16	.18	.21	.15	.12
IN.	.02	.02	.02	.01	.02	.07	.16	.19	.20	.24	. 17	. 13
STATIST	ICS OF MO	NTHLY ME.	AN DATA I	OR WATER	EARS 193	1 - 1991.	BY WATER	R YEAR (WY)			
MEAN	56.8	54.9	37.8	24.0	22.3	141	345	183	156	111	60.9	49.6
MAX	508	339	182	141	147	673	1587	846	516	726	338	331
(WY)	1985	1985	1987	1987	1987	1985	1969	1969	1965	1962	1986	1986
MIN (WY)	.000 1989	3.5 2 1989	1.00 1937	.000 1937	.000 1936	2.04 1969	20.9 1934	8.09 1934	2.17 1933	.45 1988	.095 1988	.047 1988
	STATISTI	CS		1990 CALE		1909	OR 1991 V			WATER YEA		
ANNUAL		-	1011	16237.10		•	30757.3					
ANNUAL	MEAN			44.5			84.3			111a		
HIGHEST	ANNUAL M	EAN								363		1986
LOWEST	ANNUAL ME	AN		1.55	14 00		200	A	•	21.1	A 1	1977
	DAILY MEA			155	Mar 30 3 Aug 17		309 4.5	Aug 5 Jan	3 8	5210 .00b	Aprı	1 1969
	SEVEN-DAY			4.7	Aug 17		4.		5	.00	Feb	1 1936
	ANEOUS PE			206	Mar 29		320	Aug	3	5520		1 1969
	ANEOUS PE			5.42			5.7		3	14.580		9 1969
INSTANT	ANEOUS LO	W FLOW		0.00			4.4				-	
	RUNOFF (A			32210	_		61010			80070		
ANNUAL		FSM)		. 04				093		. 12		
	RUNOFF (I			. 67 98	7		1.2 176	40		1.66 252		
	ENT EXCEE			98 24			176 77			43		
	ENT EXCEE			10			9.7	7		5.8		
							•••					

a Median of annual mean discharges is 91 ft³/s.

b Occurred on many days in several years.
c Backwater from ice.
e Estimated.

05300000 LAC QUI PARLE RIVER NEAR LAC QUI PARLE, MN

LOCATION.--Lat 44°59'42, long 95°55'09" in SWkSWk sec.27, T.118 N., R.42 W., Lac qui Parle County, Hydrologic Unit 07020003, on right bank 40 ft downstream from highway bridge and 0.5 mi southwest of city of Lac qui

Parle.

DRAINAGE AREA.--983 mi².

PERIOD OF RECORD.--April 1910 to November 1914; March 1931 to current year (winter records incomplete prior to 1934). Published as "at Lac qui Parle," 1910-14.

REVISED RECORDS.--WSP 1308: 1912(M), 1935(M).

GAGE.--Water-stage recorder. Datum of gage is 951.98 ft above National Geodetic Vertical Datum of 1929 (Minnesota Department of Transportation benchmark). Apr. 27, 1910, to Nov. 15, 1914, nonrecording gage at site 2 mi downstream at different datum. Mar. 17, 1931, to Mar. 9, 1937, non recording gage at site 40 ft unstream at present datum. upstream at present datum.
REMARKS.--Records good except those for estimated daily discharges, which are fair.

		DISCHARG	SE, CUBIC	FEET PER	SECOND, DAIL	WATER YE Y MEAN VA	EAR OCTOBER ALUES	1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 40 40 40 40 40 40 40 40 40 40 40 40 40	6.9 19 28 218 65 54 65 54 65 37 32 28 29 30 31 30 28 35 37 47 46 44 43 35 37 47 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48	29 26 23 21 20 21 19 18 13 12 16 19 21 18 20 25 27 27 27 27 27 27 27 27 27 27 27 27 27	20 19 18 17 17 17 17 19 20 21 24 22 22 22 22 23 23 17 12 9.0 3.7 66.2 65.9 65.7 10.0 20 21 20 21 20 21 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	e55.666655.444.45555555666677.957.4111	e5.7 e5.7 e5.7 e5.8 e5.8 e5.9 e6.0 e6.2 e6.3 e6.6 e6.3 e6.6 e7.3 e7.4 e7.4 e7.4 e7.4 e7.4 e7.3 e7.4 e7.3 e7.4 e7.3 e7.4 e7.3 e7.3 e7.3 e7.3 e7.3 e7.3 e7.3 e7.3	e9.1 e9.6 e10 e11 e12 e15 e21 e23 e21 e27 e37 e40 e74 e76 e96 e90 e106 e129 e137 e206 e129 e139 e218 249 222 195 163 249 99.1 15730 .09 .11	140 128 118 111 106 103 101 998 966 922 128 2076 279 251 120 120 120 130 149 140 130 122 130 147 279 279 140 140 147 279 279 147 279 279 147 279 147 279 279 147 279 147 279 279 279 279 279 279 279 279 279 27	208 269 344 362 374 401 368 324 289 263 227 209 213 220 219 192 170 161 155 148 143 133 130 141 152 27 27 27 27 27 37 355 27 401 401 401 401 401 401 401 401 401 401	407 1060 973 2290 2480 2500 2510 2430 2510 2430 1960 1680 1150 954 882 952 895 805 805 806 2080 2180 2180 2110 1720 1400 1150 1400 1150 1400 1150 1150 115	1430 1380 1250 1090 924 789 676 583 507 443 443 443 443 2254 2254 167 158 445 380 271 221 194 2194 2194 2194 2194 2194 2194	229 800 1090 931 825 626 525 534 525 516 467 396 335 289 221 222 203 171 150 139 129 110 90 81 74 68 20 63 10 90 81 74 68 20 63 20 20 20 20 20 20 20 20 20 20 20 20 20	562 494 411 383 456 572 556 582 683 557 551 658 663 557 551 658 663 557 551 658 663 665 665
MEAN MAX (WY) MIN (WY)	28.8 482 1985 .000 1932	35.5 345	18.0 112 1972 .000 1932	7.75 43.9 1987 .000 1932	16.1 140 1984 .000 1934	278 1634 1985 .000 1934	505 3578 1969 .000 1934	7EAR (WY) 199 1028 1944 .000 1934	218 1762 1984 .000	102 771 1962 .000 1934	59.2 765 1953 .000 1931	30.8 535 1985 .000 1931
SUMMARY	STATISTIC	s	FOR 1	1990 CALENI	AR YEAR	F	FOR 1991 WAT	TER YEAR		WATER Y	YEARS 1910 -	1991
LOWEST HIGHEST		7N 7N		21139.0 57.9 988 1.1 10.0 5.14 41930 .055 .80 134 24 2.6	Jun 19 Sep 17 Feb 17 Jun 19 Jun 19		90863.3 249 2510 5.4 2690 9.02 5.4 180200 25 3.44 802 56 5.8	Jun 7 Jan 11 Jan 9 Jun 4 Jun 4 Jan 11		15000 17100 19.5 95620 1.8 273 16	37c Apr 9	1931 1969

Median of annual mean discharges is 101 ft3/s.

b Many days in several years.c From floodmark (backwater from ice).

IN

MINNESOTA RIVER BASIN

05301000 MINNESOTA RIVER NEAR LAC QUI PARLE, MN

LOCATION.--Lat 45°01'17", long 95°52'05", in NWkNEk sec.24, T.118 N., R.42 W., Chippewa County, Hydrologic Unit 07020004, on left bank 200 ft downstream from dam at Lac qui Parle Outlet, 2.4 mi northeast of city of Lac qui Parle, and 3.5 mi west of Watson.

DRAINAGE AREA. -- 4,050 mi², approximately.

PERIOD OF RECORD. -- October 1942 to current year.

TOTAL

GAGE.--Water-stage recorder. Datum of gage is 900.00 ft above National Geodetic Vertican Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Nov. 10, 1944, at datum 0.20 ft lower.

REMARKS.--Records good. Part of flow from 2,050 mi², of Chippewa River basin at times diverted into Minnesota River above station. Some regulation by Big Stone Lake since Apr. 17, 1937, Lac qui Parle since January 1938, Marsh Lake since Nov. 1, 1939, and Odessa Dam since May 1974.

MIN

 $(FT^3/3)/MI^2$

REVISIONS.--Revised daily discharge, in cubic feet per second, for September 13, 1979 is 69. This figure supersedes that published in the report for 1979.

MAX

MEAN

			TOTAL	ML!	N.	MAX	MIN		(LI-/2)/WI.	_	TM	
			7007 0									,
Septe	mber 19		7967.8			672	1.8		.07		.07	
	r 1979		428438.8			10500	1.8		.29		3.94	
Cal Y	r 1979		444901.8	12:	19	10500	1.8		.30		4.09	1
		DISCH	ARGE, CU	BIC FEET PI	ER SECOND	, WATER	YEAR OCTOBE VALUES	R 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAI	R APR	MAY	JUN	JUL	AUG	SEP
1	27	202	88	e86	24	81		861	1000	3570	1700	485
2	28	200	88	e86	24	118	684	861	1070	3640	1890	482
3	72	200	88	e 78	24	121	L 553	862	1160	3690	2190	525
4	100	202	91		24	188		868	1590	3640	2700	599
5	100	135	88		25	226		873	1630	3570	3160	590
6	102	95	88		24	222		919	1610	3500	3290	472
ž	101	95	88		24	227	543	1120	1650	3430	3360	354
8	102	97	88		25	224	545	1220	1690	3330	3430	356
g	102	61	88	63	24	226	5 544	1220	1820	3200	3450	420
	102				24	227	544		1950			527
10	102	40	91		24			1210	1920	3080	3430	
11	163	40	91		25	224		1200	2030	2960	3370	658
12	199	40	88	63	25	264	542	1190	2070	2870	3320	809
13	199	40	91		24	330		1070	2070	2730	3230	1050
14	199	40	91		23	393		833	2080	2580	3120	1460
15	198	63	91	63	29	424	654	826	2150	2380	3010	1450
16	199	91	91	61	25	424	768	876	2150	2060	2920	1420
17	214	91	88		25	422		964	2160	1960	2810	1320
18	201	91	91		25	418		911	2170	1940	2680	1320
19	201	91	91		25	418		908	2130	1890	2450	1250
20	201	91	91		26	441	932	904	2110	1820	2190	1000
21	200	93	e90		25	415		878	2400	1760	1960	455
22	202	91	e90	61	25	416	919	824	3590	1830	1850	437
22	201			01	25		919	801			1770	432
23	201	91	e90		25	415	917			1860		
24	201	100	e90		24	417	769	768	4720	1850	1670	469
25	202	88	e90		25	495	542	672	4140	1750	1600	534
26	200	91	e90	61	38	655		667	4060	1580	1570	526
27	205	91	e90	61	50	890	472	664	4000	1550	1570	521
28	202	93	e88		51	1060	470	667	3820	1580	1550	519
29	202	91	e86			1200	544	669	3600	1580	1440	515
30	202	88	e86	24		1280	727	743	3500	1590	1030	511
31	202		e86	24		1280)	895		1690	505	
TOTAL	5029	2922	2766	1880	757	14141	19990	27944	75080	76460	74215	21466
MEAN	162	97.4	89.2	60.6	27.0	456		901	2503	2466	2394	716
MAX	214	202	91	86	51	1280		1220	4960	3690	3450	1460
MIN	27	40	86	24	23	81		664	1000	1550	505	354
AC-FT	9980	5800	5490	3730	1500	28050		55430		151700	147200	42580
CFSM	.04	.02	.02	.01	.01	. 11		. 22	. 62	.61	. 59	.18
IN.	.05	.03	.03	.02	.01	, 13	. 18	. 26	. 69	.70	. 68	.20
STATIST	ICS OF N	ONTHLY M	EAN DATA	FOR WATER	YEARS 19	43 - 199	1, BY WATER	YEAR (WY)			
MEAN	252	255	197	138	164	762	2556	1285	1058	807	403	240
MAX	2924	2327	1204	57 4	634	4108		5771	4229	3309	2415	2402
(WY)	1987	1985	1985	1987	1987	1985		1986	1984	1953	1986	1986
												5.59
MIN	4.16	. 46	. 17	.19	.094	46.5		122	29.5	14.7	11.8	
(WY)	1977	1977	1977	1977	1977	1956	1961	1959	1988	1988	1974	1967

05301000 MINNESOTA RIVER NEAR LAC QUI PARLE, MN--Continued

SUMMARY STATISTICS	FOR 1990 CALENDAR YEA	AR FOR 1991 WAT	TER YEAR	WATER YEARS 19	43 - 1991
ANNUAL TOTAL	80523	322650			
ANNUAL MEAN	221	884		676	
HIGHEST ANNUAL MEAN				2507	1986
LOWEST ANNUAL MEAN				75.7	1959
HIGHEST DAILY MEAN	1210 Jun 2	22 4960	Jun 23	28700 Ap	r 12 1969
LOWEST DAILY MEAN	23 Feb 2	28 23	Feb 14	.00a -	
ANNUAL SEVEN-DAY MINIMUM	24 Feb 2	23 24	Jan 29	.00 Oc	t 19 1951
INSTANTANEOUS PEAK FLOW	1230 Jun 2	22 5040	Jun 23,24		r 12 1969
INSTANTANEOUS PEAK STAGE	25.51 Jun 2	22 33.39	Jun 23,24	39.75 Ap	r 12 1969
INSTANTANEOUS LOW FLOW	8.8 Aug :	16 21	Feb 14	_	
ANNUAL RUNOFF (AC-FT)	159700	640000		490100	
ANNUAL RUNOFF (CFSM)	. 054	. 22		.17	
ANNUAL RUNOFF (INCHES)	. ,74	2.96		2.27	
10 PERCENT EXCEEDS	407	2690		1680	
50 PERCENT EXCEEDS	135	470		191	
90 PERCENT EXCEEDS	29	40		25	

a Many days in several years.
e Estimated.

05301000 MINNESOTA RIVER NEAR LAC QUI PARLE, MN--Continued

WATER QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963, 1967, 1989 to current year.

REMARKS. --Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME		ANCE (US/CM)	STAND- A ARD W UNITS) (D	MPER- S. TURE (IATER IEG C) E	(MM D OF SO IG) (M	DEM CH GEN, IC IS- (H OLVED LEV IG/L) (MG	EM- BI CAL CH (IGH IC (EL) 5 (/L) (M	AND, TOTAL
AUG 20	0845	2390	878	8.5	22.5	740 8	1.4	41 4	.9 13
DATE AUG 20	RESII VOL. TILI SUS: PENDI (MG (005:	A- GEN E, NITRI TOTA ED (MG/ /L) AS N	, NITRIT TE DIS- L SOLVE L (MG/L) AS N) 5) (00613	NITRO- E GEN, NO2+NO3 D TOTAL (MG/L AS N)) (00630)	NO2+NÓ3 DIS- SOLVED (MG/L AS N)	NITROGEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, APMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
DATE	PHOR PHOR TOT. (MG AS	US DIS AL SOLV /L (MG/ P) AS F	S PHORUS - ORTHO ED TOTAL L (MG/L) AS P)	DIS- SOLVED (MG/L AS P)	DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
20	0.:	21 0.1	1 0.08	0.08	10	2.3	40	14.0	<0.10

05304500 CHIPPEWA RIVER NEAR MILAN, MN

LOCATION.--Lat 45°06'39", long 95°47'57", in SE\SE\ sec.16, T.119 N., R.41 W., Chippewa County, Hydrologic Unit 07020005, on right bank 800 ft upstream from bridge on State Highway 40, 2.0 mi upstream from small tributary, and 5.5 mi east of Milan.

DRAINAGE AREA.--1,870 mi², approximately.

PERIOD OF RECORD.--March 1937 to current year.

REVISED RECORD.--Wareh 1937 to current year.

GAGE.--Water-stage recorder. Datum of gage is 959.69 ft above National Geodetic Vertical Datum of 1929. Prior to June 15, 1942, nonrecording gage on bridge 800 ft downstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by several small lakes upstream from gage.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 400 ft³/s, and maximum (*):

DISCHARGE, CUBIC FEET FER SECOND, MATER YEAR OCTORER 1990 TO SEPTEMBER 1991 DAY OCT NOV DEC JAM FEE MAR ARR MAY JUN JUL AUG SEP 1 171 118 96 e44 e22 e20 413 762 855 1300 488 238 2 2 73 116 92 e44 e20 e20 386 742 1280 1370 1840 239 3 125 e165 90 e44 e22 e20 386 742 1280 1370 1840 239 3 125 e165 90 e44 e22 e22 386 742 1280 1370 1840 239 2 126 e165 90 e44 e22 e22 384 780 1100 1100 200 2100 221 6 2 126 e165 e165 e165 e165 e165 e165 e165 e16	Date Mar. 27 Apr. 16 May 4 May 17 May 30 June 2 a Ba	Tim 050 013 221 024 011 114 ckwater f	(ft 0 1, 0 5 5 5 5 1, 5 1,	harge 3/s) 930 807 828 988 200 330	Gage height (ft) 5.61 3.56 3.60 3.90 4.29 4.54	t		Date June July July July Aug	15 22 1 22	Time 2030 0015 1615 1530 2030 0200	Discharge (ft ³ /s) 1,300 *2,710 1,530 881 531 2,590	Gage h (ft 4.4 *6.8 3.7 3.0 6.6	32 32 31 70 33
DAY OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG SEP			DISCHARG	E, CUBI	C FEET PER				ER 1990	TO SEPTEME	BER 1991		
2 73 116 92 444 229 229 386 742 1280 1370 1840 230 3 124 106 90 444 229 229 327 720 1160 1100 2430 222 4 205 102 91 42 229 229 334 780 1160 1100 2430 222 4 205 102 91 42 229 229 334 780 1160 1100 2430 222 5 20 20 20 20 20 20 20 20 20 20 20 20 20	DAY	OCT	NOV		JAN			APR					
3 124 e106 90 e44 e29 e29 382 720 1160 1100 2430 222 4 205 e102 91 e42 e29 e29 344 780 1070 930 1750 211 55 216 e88 92 e40 e29 e29 341 780 1070 930 1750 211 65 216 e88 92 e40 e29 e29 341 780 1070 930 1750 211 770 170 170 170 170 170 170 170 170 1			118 116										
5 216	3	124	e106	90		e 29	e29	362	720	1160	1100	2430	222
6 208 e96 89 e39 e29 e33 330 790 e28 774 1140 197 7 194 e96 91 e37 e29 e33 330 790 e28 774 1140 197 8 188 e87 92 e35 e29 e35 315 732 733 625 963 625 8 188 e87 92 e35 e29 e37 312 709 668 536 50 882 1080 10 188 e89 90 e35 e29 e37 312 709 668 536 590 892 1080 112 156 e95 92 e35 e29 e37 312 709 668 536 590 892 1080 112 156 e95 92 e35 e29 e37 312 709 688 536 590 691 440 112 156 e95 92 e35 e29 e37 312 709 688 536 590 691 440 112 156 e95 92 e35 e29 e37 376 616 608 526 596 1050 13 148 98 e95 e35 e29 e70 532 590 586 488 543 1120 15 133 102 e75 e35 e29 e70 752 579 967 470 500 1170 16 126 103 e88 e34 e29 e70 776 736 1220 441 478 1120 17 126 102 e53 e34 e29 e70 776 736 1220 441 478 1120 18 123 130 10 e55 e33 e29 e70 776 7876 1220 441 478 1120 18 123 130 10 e85 e34 e29 e70 776 786 1220 441 478 1120 19 133 100 e85 e34 e29 e70 776 786 1220 441 478 1120 19 133 100 e85 e34 e29 e70 776 786 1220 441 478 1120 19 133 100 e85 e34 e29 e70 776 7876 1220 441 478 1120 19 133 100 e85 e34 e29 e70													
8 188 e87 92 e35 e29 e35 315 732 733 625 963 625 963 625 961 183 e93 91 e35 e29 e37 309 693 817 535 809 1440 111 168 e88 90 e35 e29 e37 309 693 817 535 809 1440 112 156 e85 92 e35 e29 e55 308 640 688 534 654 1090 131 148 98 95 e35 e29 e70 376 616 608 526 596 1050 144 142 98 79 e35 e29 e70 376 616 608 526 596 1050 144 142 98 79 e35 e29 e70 376 616 608 526 596 1050 144 142 98 75 e35 e29 e70 776 752 590 586 498 543 1120 151 151 151 151 151 151 151 151 151 15	6		e 96	89				330	790	928	742	1140	197
9 183 e93 91 e35 e29 e37 312 709 668 580 892 1080 10 180 e98 90 e35 e29 e37 309 693 817 535 809 1440 11 168 e93 90 e35 e29 e40 301 663 773 502 726 1240 12 156 e95 92 e35 e29 e70 376 616 608 526 596 1050 13 148 98 95 e35 e29 e70 376 616 608 526 596 1050 14 142 98 79 e35 e29 e70 376 616 608 526 596 1050 14 142 98 79 e35 e29 e70 752 579 967 470 500 1170 15 123 102 e75 e35 e29 e70 762 579 967 470 500 1170 16 126 103 e68 e34 e29 e70 776 738 1220 441 478 1120 17 126 102 e63 e34 e29 e70 776 738 1220 441 478 1120 18 124 100 e59 e33 e29 e70 656 616 608 608 608 608 608 608 608 608 608 60						e29	e33						
11 188 e93 90 e35 e29 e40 301 663 773 502 726 1240 1012 135 e95 e95 e35 e29 e55 308 640 688 534 654 1090 13 148 98 95 e35 e29 e70 376 616 608 526 596 1050 14 142 98 79 e35 e29 e70 376 616 608 526 596 1050 151 133 102 e75 e35 e29 e70 762 579 967 470 500 1170 15 133 102 e75 e35 e29 e70 762 579 967 470 500 1170 15 126 103 e68 e34 e29 e70 776 736 1220 441 478 1120 177 126 102 e63 e34 e29 e70 776 786 1220 441 478 1120 18 124 100 e55 e33 e29 e70 676 726 726 798 420 434 1010 18 124 100 e55 e33 e29 e70 676 726 798 420 434 1010 19 122 100 e55 e31 e29 e70 676 726 798 420 434 1010 19 122 100 e55 e31 e29 e70 676 726 798 420 434 1010 19 122 100 e55 e31 e29 e10 666 590 e77 442 331 891 1010 e70 e70 e70 e70 e70 e70 e70 e70 e70 e7													
12 156 e95 92 e35 e29 e70 376 616 608 526 596 1050 14 142 98 79 e35 e29 e70 376 616 608 526 596 1050 14 142 98 79 e35 e29 e70 532 590 566 498 543 1120 15 133 102 e75 e35 e29 e70 762 579 967 470 500 1170 16 126 103 e68 e34 e29 e70 776 736 1220 441 478 1120 17 126 102 e63 e34 e29 e70 776 736 1220 441 478 1120 18 124 98 e59 e33 e29 e70 676 726 798 420 434 1010 18 124 198 e59 e33 e29 e70 676 726 798 420 434 1010 19 128 100 e55 e31 e29 e100 636 651 677 425 403 954 20 133 104 e52 e30 e29 e120 603 599 647 452 381 897 21 133 101 e50 e29 e29 e150 573 557 2020 446 360 847 222 133 102 e48 e28 e29 e185 542 523 2460 806 341 783 223 130 100 e48 e28 e29 e176 510 495 1650 705 330 728 241 128 97 e47 e29 e29 e176 510 495 1650 705 330 728 25 116 57 e47 e30 e29 e39 e310 486 468 1213 550 351 668 25 114 e90 46 e29 e29 e150 573 551 777 424 331 561 362 77 144 e100 e46 e29 e29 e350 e364 441 985 3497 313 613 287 114 e100 e46 e29 e29 e350 e364 441 985 3497 313 613 287 114 e90 e46 e29 e29 e350 e364 441 985 3497 313 561 320 115 e97 e45 e29 e 531 505 934 731 518 266 541 300 115 e97 e45 e29 e 531 505 934 731 518 266 541 300 115 e97 e45 e29 e 531 505 934 731 518 266 541 300 115 e97 e45 e29 e 452 634 1110 727 485 256 520 31 124 e e45 e28 e 424 e 883 e 451 245 E36 340 115 e97 e45 e29 e 531 505 934 731 518 266 541 300 115 e97 e45 e29 e 452 634 1110 727 485 256 520 31 124 e e45 e28 e 424 e 883 e 451 245 e 451 245 e 451 245 e 451 246 e-													
13 148 98 95 435 e29 e70 376 616 608 526 596 1050 14 142 98 79 e35 e29 e70 762 579 967 470 500 1170 15 133 102 e75 e35 e29 e70 762 579 967 470 500 1170 16 126 103 e68 e34 e29 e70 776 736 1220 441 478 1120 17 126 102 e63 e34 e29 e70 719 899 971 419 461 1060 18 124 98 e59 e33 e29 e70 676 726 788 420 434 1010 19 128 100 e55 e31 e29 e100 636 651 677 425 403 954 20 133 104 e52 e30 e29 e120 603 599 647 422 381 897 21 133 101 e50 e29 e29 e150 573 557 2020 446 360 847 22 133 102 e48 e28 e29 e185 542 523 2460 806 341 783 23 130 100 e48 e26 e29 e176 510 495 150 705 330 729 24 126 97 e47 e29 e29 e210 482 468 1210 530 325 686 25 122 82 e47 e30 e29 e380 456 444 983 440 317 647 26 116 57 e47 e30 e29 e39 656 444 188 1831 613 27 114 e100 e46 e29 e29 658 476 517 730 514 283 560 28 114 e99 e46 e29 e29 658 476 517 730 514 283 560 28 114 e99 e46 e29 e29 658 476 517 730 514 283 560 28 114 e98 e45 e29 e29 658 476 517 730 514 283 560 28 114 e98 e45 e29 e29 658 476 517 730 514 283 560 28 114 e98 e45 e29 e29 658 476 517 730 514 283 560 28 114 e98 e45 e29 e29 658 476 517 730 514 283 560 31 124 e45 e29 531 505 834 731 518 266 541 30 115 e97 e45 e29 452 634 1110 727 485 255 520 31 124 e45 e28 452 634 1110 727 485 255 520 31 124 e45 e28 452 634 1110 727 485 256 520 31 124 e45 e28 452 634 1110 727 485 255 520 31 124 e45 e28 452 634 1110 727 485 255 520 31 124 e45 e28 452 634 1110 727 485 255 520 31 124 e45 628 452 634 1110 727 485 255 520 31 124 e45 628 452 634 1110 727 485 255 520 31 124 e45 628 452 634 110 727 485 255 520 31 124 e45 628 452 634 110 727 485 255 520 31 124 e45 628 452 634 110 727 485 255 520 31 124 e45 628 452 634 110 727 485 255 520 31 124 e45 628 452 634 110 727 485 255 520 31 124 e45 628 452 634 110 727 485 255 520 31 124 e45 628 452 634 110 727 485 255 520 31 124 104 104 104 104 104 104 104 104 104 104	11												
15 133 102 e75 e35 e29 e70 762 579 967 470 500 1170 16 126 103 e68 e34 e29 e70 776 736 1220 441 478 1120 17 126 102 e63 e34 e29 e70 779 899 971 419 461 1060 18 124 98 e59 e33 e29 e70 676 726 798 420 434 1010 19 128 100 e55 e31 e29 e100 636 651 677 425 403 954 20 133 104 e52 e30 e29 e120 603 599 647 432 381 897 21 133 101 e50 e29 e29 e150 573 557 2020 446 360 847 22 133 100 e48 e26 e29 e185 542 523 2460 806 341 783 23 130 100 e48 e26 e29 e185 542 523 2460 806 341 783 24 126 97 e47 e29 e29 e210 482 488 1210 530 325 686 25 122 82 e47 e30 e29 e380 456 444 993 440 317 647 26 116 57 e47 e30 e29 e380 456 444 993 440 317 647 27 114 e100 e46 e29 e29 1310 435 415 774 424 301 586 28 114 e99 e46 e29 e29 1310 435 415 774 424 301 586 28 114 e98 e45 e29 e19 658 476 517 730 514 223 560 29 114 e98 e45 e29 e19 658 476 517 730 514 223 560 29 114 e98 e45 e29 e29 1310 435 415 774 424 301 586 28 114 e98 e46 e29 e29 130 435 415 774 424 301 586 29 114 e98 e46 e29 e29 130 435 415 774 424 301 586 29 114 e98 e46 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 e19 658 476 517 730 514 283 560 29 114 e98 e45 e29 e19 658 476 517 730 514 283 560 29 114 e98 e45 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 e29 1310 435 415 774 424 301 586 28 114 e98 e46 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 e29 130 435 415 774 424 301 586 28 114 e98 e46 e29 e29 130 435 415 774 424 301 586 28 114 e98 e46 e29 e29 e186 e186 e196 e196 e196 e196 e196 e196 e196 e19	13	148	98	95	e35	e29	e70				526		
16													
18 124 98 69 63 e29 e70 676 726 798 420 434 1010 19 128 100 e55 e31 e29 e100 636 651 677 425 403 954 20 133 104 e52 e30 e29 e120 603 599 647 432 381 897 21 133 101 e48 e28 e29 e185 573 557 2020 446 860 847 22 133 102 e48 e28 e29 e185 542 523 2460 806 341 783 23 130 100 e48 e26 e29 e176 510 495 1650 705 330 729 24 126 97 e47 e29 e29 e210 482 468 1210 530 325 685 25 122 82 e47 e30 e29 e380 455 444 993 440 317 647 26 116 57 e47 e30 e29 e29 e30 455 444 993 440 317 647 26 116 57 e47 e30 e29 e380 455 444 993 440 317 647 27 114 e100 e46 e29 e29 1310 435 415 774 424 301 586 28 114 e99 e46 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 531 505 934 731 518 266 541 30 115 e97 e45 e29 452 634 1110 727 485 256 520 31 124 e45 e28 424 883 451 245 10TAL 4367 2936 2156 1048 812 6298 1472 20980 29477 19126 21185 21880 MEAN 141 97.9 69.5 33.8 29.0 203 472 667 983 617 683 729 MAX 216 118 96 44 29 1310 776 1110 2460 1370 2430 1440 MIN 71 57 45 26 29 29 301 415 586 397 245 197 AC-FT 8660 5820 4280 2080 1610 12490 28110 41610 58470 37940 42020 43400 CFSM 08 .05 .04 .02 .02 .13 .28 .42 .59 .38 .42 .44 STATISTICS OF MONTHLY MEAN DATA FOR NATERY FEARS 1938 - 1991, BY MATER YEAR 1906 1316 655 425 404 2141 3661 284 259 .38 .42 .44 STATISTICS OF MONTHLY MEAN DATA FOR NATERY FEARS 1938 - 1991, BY MATER YEAR 1939 1940 1940 1960 1316 655 425 425 404 2141 3661 286 2248 1822 1662 2273 ANNUAL BEAN HIGHEST DAILY MEAN DATA FOR NATERY FEARS 1938 - 1991, BY MATER YEAR 1939 1940 1940 1940 1960 1985 1985 1989 1994 MATER YEAR 1930 1940 1940 1960 1310 776 1100 Apr 9 1969 1969 INSTANTANEOUS FEAK STAGE 4.11 Jun 18 6.82 Jun 22 1160 Apr 9 1969 197 ANNUAL SEVEN-DAY MINIMUM 6.0 Jun 18 260 Jun 22 1160 Apr 9 1969 1969 INSTANTANEOUS FEAK STAGE 4.11 Jun 18 6.82 Jun 22 1150 Apr 9 1969 INSTANTANEOUS FEAK STAGE 4.11 Jun 18 6.82 Jun 22 1150 Apr 9 1969 INSTANTANEOUS FEAK STAGE 4.11 Jun 18 6.82 Jun 22 1150 Apr 9 1969 INSTANTANEOUS FEAK STAGE 4.11 Jun 18 6.82 Jun 22 1150 Apr 9 1969 INSTANTANEOUS FEAK STAGE 4.11 Jun 18 6.82 Jun 22 1150	16	126	103	e68	e34	e29	e70	776	736	5 1220	441	478	1120
19 128 100 e55 e31 e29 e100 636 551 677 425 403 954 20 133 104 e52 e30 e29 e120 603 599 647 432 381 897 21 133 101 e50 e29 e29 e150 573 557 2020 446 360 847 22 133 100 e48 e28 e29 e155 573 557 2020 446 360 847 22 133 130 100 e48 e28 e29 e176 510 495 1650 705 330 729 24 126 97 e47 e29 e29 e210 482 488 1210 530 325 686 25 122 82 e47 e30 e29 e380 456 444 993 440 317 647 26 116 57 e47 e30 e29 e380 456 444 993 440 317 647 26 116 57 e47 e30 e29 e29 1310 435 415 774 424 301 586 28 114 e99 e46 e29 e29 1510 435 415 774 424 301 586 28 114 e99 e46 e29 e29 1510 435 415 774 424 301 586 28 114 e98 e46 e29 e29 e380 447 6 517 730 514 283 560 29 114 e98 e46 e29 e29 e380 428 658 476 517 730 514 283 560 29 114 e98 e46 e29 e29 e380 428 658 476 517 730 514 283 560 29 114 e98 e46 e29 e29 e380 428 658 476 517 730 514 283 560 29 114 e98 e46 e29 e29 e380 428 658 476 517 730 514 283 560 29 114 e98 e46 e29 e29 e380 428 658 476 517 730 514 283 560 29 114 e98 e46 e29 e29 e380 428 658 476 517 730 514 283 560 29 114 e98 e46 e29 e29 e380 428 638 4110 727 485 256 520 20 115 e87 e45 e29 452 634 1110 727 485 256 520 428 61 114 e98 e45 e29 452 638 14172 20880 29477 19128 21185 21880 483 12 629 1310 776 1110 2480 1370 2430 1440 483 141 97.9 69.5 33.8 29.0 203 472 677 983 617 683 728 483 141 22 629 1310 776 1110 2480 1370 2430 1440 483 141 97.9 69.5 33.8 29.0 203 472 677 983 617 683 728 483 181 67 683 728 483 181 68 6 84 29 29 301 415 586 367 370 2430 1440 483 181 68 6 88 28 29 29 301 415 586 367 370 2430 1440 483 181 68 6 88 28 28 29 29 301 415 586 367 33 33 37 29 181 68 188 6 188													
21 133 101 e50 e29 e29 e150 573 557 2020 446 360 847 222 133 100 100 e48 e26 e29 e176 542 523 2460 806 341 783 23 130 100 e48 e26 e29 e176 510 495 1650 705 330 729 24 126 97 e47 e29 e29 e210 482 468 1210 530 325 686 25 122 82 e47 e30 e29 e380 485 444 983 440 317 647 26 116 57 e47 e30 e29 e280 e280 485 444 983 440 317 647 26 116 57 e47 e30 e29 e29 e380 485 415 774 424 301 586 28 114 e99 e46 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 e29 658 476 517 730 514 283 560 30 115 e97 e45 e29 531 505 934 731 518 266 541 30 115 e97 e45 e29 452 634 1110 727 485 256 520 31 124 e45 e28 424 883 451 245 245 451 245 451 245 245 451 245 245 451 245 245 245 245 245 245 245 245 245 245	19	128	100	e55		e 29	e100	636	653	677	425	403	954
22 133 102													
24 126 97 e47 e29 e29 e210 482 468 1210 530 325 686 25 122 82 e47 e30 e29 e380 456 444 993 440 317 6647 26 116 57 e47 e30 e29 e767 434 421 858 397 313 613 27 114 e100 e46 e29 e29 1310 435 415 774 424 301 586 28 114 e99 e46 e29 e29 658 476 517 730 514 223 560 29 114 e98 e45 e29 531 505 934 731 518 266 541 30 115 e97 e45 e28 424 883 451 245 TOTAL 4367 2936 2156 1048 812 6298 1472 20980 29477 19126 21185 21880 MEAN 141 97.9 69.5 33.8 29.0 203 472 677 983 617 683 729 MAX 216 118 96 44 29 1310 776 1110 2460 1370 2430 1440 MIN 71 57 45 26 29 29 301 415 586 397 245 197 AC-FT 8660 5820 4280 2080 1610 12490 28110 41610 58470 37940 42020 43400 CFSM .08 .05 .04 .02 .02 .13 .28 .42 .59 .38 .42 .44 STATISTICS OF MONTHLY MEAN DATA FOR MATER YEARS 1938 - 1991, BY WATER YEAR (WY) MEAN 1996 1318 655 425 404 .02 .02 .13 .28 .42 .59 .38 .42 .44 MAX 1996 1318 655 425 404 .02 .02 .13 .28 .42 .59 .38 .42 .44 MAX 1996 1318 655 425 404 .000 2.92 .13 .28 .42 .59 .38 .42 .44 MAX 1996 1318 655 425 404 .000 2.92 .13 .28 .42 .59 .38 .42 .44 MAX 1996 1318 655 425 404 .000 2.92 .99 81.6 36.8 15.1 6.19 3.50 MAX 1996 1318 655 425 404 .000 2.92 .99 81.6 36.8 15.1 6.19 3.50 MAX 1996 1318 655 425 404 .000 2.92 .99 81.6 36.8 15.1 6.19 3.50 MAX 1996 1318 655 425 404 .000 2.92 .99 81.6 36.8 15.1 6.19 3.50 MAX 1996 1318 655 425 404 .000 2.92 .99 81.6 36.8 15.1 6.19 3.50 MAX 1996 1318 655 425 404 .000 2.92 .99 81.6 36.8 15.1 6.19 3.50 MAX 1996 1318 655 425 404 .000 2.92 .99 81.6 36.8 15.1 6.19 3.50 MAX 1996 1318 655 425 404 .000 2.99 .90 81.6 36.8 15.1 6.19 9.50 MAX 1996 1318 655 425 404 .000 2.99 .90 81.6 36.8 15.1 6.19 9.50 MAX 1996 1318 655 425 404 .90 .90 .90 .90 .90 .90 .90 .90 .90 .90	22	133						542	523	3 2460	806	341	783
25 122 82 e47 e30 e29 e380 456 444 993 440 317 647 266 116 57 e47 e30 e29 e767 434 421 858 397 313 613 27 114 e100 e46 e29 e29 1310 435 415 774 424 301 586 28 114 e99 e46 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 531 505 934 731 518 266 541 30 115 e97 e45 e29 452 634 1110 727 485 256 520 31 124 e45 e28 424 883 451 245 TOTAL 4367 2936 2156 1048 812 6298 14172 20980 29477 19126 21185 21880 MEAN 141 97.9 69.5 33.8 29.0 203 472 677 983 617 683 729 MAX 216 118 96 44 29 1310 776 1110 2460 1370 2450 1440 MIN 71 57 45 26 29 29 301 415 586 397 245 197 AC-PT 8660 5820 4280 2080 1610 12490 28110 41610 58470 37940 42020 43400 CFSM .08 .05 .04 .02 .02 .11 .25 .36 .53 .33 .37 .39 IN .09 .06 .04 .02 .02 .11 .25 .36 .53 .33 .37 .39 IN .09 .06 .04 .02 .02 .13 .28 42 .59 .38 .42 .44 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 1991, BY WATER YEAR (WY) 1985 1985 1985 1985 1987 1987 1985 1952 1986 1984 1952 1986 1986 1986 1986 1986 1986 1986 1985 1985 1985 1987 1987 1987 1985 1952 1986 1984 1952 1986 1986 1986 1986 1986 1986 1986 1986						e29							
26 116 57 e47 e30 e29 e767 434 421 858 397 313 613 27 114 e100 e46 e29 e29 1310 435 415 774 424 301 586 28 114 e99 e46 e29 e29 658 476 517 730 514 283 550 29 114 e98 e45 e29 531 505 934 731 518 266 541 30 115 e97 e45 e29 452 634 1110 727 485 256 520 31 124 e45 e28 424 883 451 245 TOTAL 4367 2936 2156 1048 812 6298 14172 20980 29477 19126 21185 21880 MEAN 141 97.9 69.5 33.8 29.0 203 472 677 983 617 683 729 MAX 216 118 69.6 44 29 1310 776 1110 2460 1370 2430 1440 MIN 71 57 45 26 29 29 301 415 586 397 245 197 AC-FT 8660 5820 4280 2080 1610 12490 28110 41610 58470 37940 42020 43400 CFSM 0.8 0.5 0.4 0.2 0.2 11 .25 .36 .53 .33 .3 .37 .39 IN. 0.9 0.6 0.4 0.2 0.2 .11 .25 .36 .53 .33 .3 .37 .39 IN. 1.90 166 102 56.0 52.3 351 225 588 529 369 209 197 MEAN 190 166 102 56.0 52.3 351 225 588 529 369 209 197 MAX 1996 1318 655 425 404 2141 3661 2462 2248 1822 1662 2273 (WY) 1985 1985 1985 1987 1987 1985 1952 1986 1984 1952 1986 1986 MIN 1977 1977 1977 1977 1940 1940 1945 1959 1959 1940 IMMAN 190 166 102 56.0 52.3 351 366 242 248 1822 1662 2273 (WY) 1985 1985 1985 1987 1987 1985 1952 1986 1984 1952 1986 1986 MIN 1977 1977 1977 1970 1940 1940 1965 1959 1939 1940 IMMAN 190 166 102 56.0 52.3 351 365 245 404 2141 3661 2462 2248 1822 1662 2273 (WY) 1985 1985 1985 1987 1987 1985 1952 1986 1984 1952 1986 1986 MIN 1977 1977 1977 1970 1940 1940 1965 1959 1939 1940 IMMAN 1599 CALENDAR YEAR 509 ANNUAL MEAN IGHEST DAILY MEAN 1030 Jun 18 260 Jun 22 1860 1976 1976 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR 509 Jun 22 1860 1976 1976 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR 509 Jun 22 1860 0 Apr 10 1969 1875 1875 1875 1876 0 Jun 22 1860 0 Apr 10 1969 1875 1875 1876 0 Jun 22 1860 0 Apr 10 1969 1875 1875 1876 0 Jun 22 1860 0 Apr 10 1969 1875 1875 1876 0 Jun 22 1860 0 Apr 10 1969 1875 1875 1876 0 Jun 22 1860 0 Apr 10 1969 1875 1875 1876 0 Jun 22 1860 0 Apr 10 1969 1875 1876 0 Jun 22 1860 0 Apr 10 1969 1875 1876 0 Jun 22 1860 0 Apr 10 1969 1875 1876 0 Jun 22 1860 0 Apr 10 1969 1875 1876 0 Jun 22 1860 0 Apr 10 1969 1876	25												
28 114 e99 e46 e29 e29 658 476 517 730 514 283 560 29 114 e98 e45 e29 531 505 934 731 518 266 541 30 115 e97 e45 e29 452 634 1110 727 485 256 520 31 124 e45 e28 424 883 451 245 245 245 245 245 245 245 245 245 245	26	116		e47	e30	e29	e767						
29 114 98 645 929 531 505 934 731 518 266 541 30 115 97 645 929 452 634 1110 727 485 256 520 31 124 645 928 424 883 451 245 TOTAL 4367 2936 2156 1048 812 6298 14172 20980 29477 19126 21185 21880 MEAN 141 97.9 69.5 33.8 29.0 203 472 677 983 617 683 729 MAX 216 118 96 44 29 1310 776 1110 2460 1370 2430 1440 MIN 71 57 45 26 29 29 301 415 586 397 245 197 CFSM .08 .05 .04 .02 .02 .11 .25 .36 .39 .37 .49 CFSM .08 .05 .04 .02 .02 .11 .25 .36 .53 .33 .37 .39 IN09 .06 .04 .02 .02 .11 .25 .36 .53 .33 .37 .39 IN09 .06 .04 .02 .02 .13 .28 .42 .59 .38 .42 .44 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 1991, BY WATER YEAR (WY) MEAN 1996 1318 655 425 404 2141 3661 2462 2248 1822 1662 2273 (WY) 1985 1985 1985 1987 1987 1985 1952 1986 1984 1952 1986 1986 MIN 5.51 8.67 4.77 .094 .000 2.92 90.9 81.6 36.8 15.1 6.19 3.50 (WY) 1977 1977 1977 1977 1940 1940 1965 1959 1939 1940 1940 1976 1976 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR ANNUAL TOTAL ANNUAL MEAN HIGHEST DAILY MEAN													
31 124	29	114	e98	e45	e29		531	505	934	731	518	266	541
TOTAL 4367 2936 2156 1048 812 6298 14172 20980 29477 19126 21185 21880 MEAN 141 97.9 69.5 33.8 29.0 203 472 677 983 617 683 729 MAX 216 118 96 44 29 1310 776 1110 2460 1370 2430 1440 MIN 71 57 45 26 29 29 301 415 586 397 245 197 AC-FT 8660 5820 4280 2080 1610 12490 28110 41610 58470 37940 42020 43400 CFSM .08 .05 .04 .02 .02 .11 .25 .36 .53 .33 .37 .39 IN .09 .06 .04 .02 .02 .11 .25 .36 .53 .33 .37 .39 IN .09 .06 .04 .02 .02 .13 .28 .42 .59 .38 .42 .44 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 1991, BY WATER YEAR (WY) MEAN 190 166 102 56.0 52.3 .351 .925 588 529 369 209 197 MAX 1996 1318 655 425 404 2141 3661 2462 2248 1822 1662 2273 (WY) 1985 1985 1985 1987 1987 1985 1952 1986 1984 1952 1986 1986 MIN 5.51 8.67 4.77 .094 .000 2.92 90.9 81.6 36.8 15.1 6.19 3.50 (WY) 1977 1977 1977 1940 1940 1940 1965 1959 1939 1940 1940 1976 1976 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR ANNUAL MEAN 159 396 2460 Jun 22 10100 Apr 10 1969 LOWEST DAILY MEAN 159 599.7.4 144437 ANNUAL MEAN 159 396 2460 Jun 22 10100 Apr 10 1969 LOWEST DAILY MEAN 1030 Jun 18 2460 Jun 22 1000 Apr 10 1969 LOWEST DAILY MEAN 1030 Jun 18 26 Jun 23 .00b ANNUAL SEVEN-DAY MINIMUM 6.0 Jun 18 29 Jun 21 .00 Jun 4 1940 INSTANTANEOUS PEAK FLOW 1040 Jun 18 2710 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK FLOW 1040 Jun 18 2710 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr													
MAX 216 118 96 44 29 1310 776 1110 2460 1370 2430 1440 MIN 71 57 45 26 29 29 301 415 586 397 245 197 AC-PT 8660 5820 4280 2080 1610 12490 28110 41610 58470 37940 42020 43400 CFSM .08 .05 .04 .02 .02 .11 .25 .36 .53 .33 .37 .39 IN .09 .06 .04 .02 .02 .11 .25 .36 .53 .33 .37 .39 IN .09 .06 .04 .02 .02 .11 .25 .36 .53 .33 .37 .39 IN .09 .06 .04 .02 .02 .13 .28 .42 .59 .38 .42 .44 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 1991, BY WATER YEAR (WY) MEAN 190 166 102 56.0 52.3 .351 .925 .588 .529 .369 .209 .197 MAX 1996 1318 .655 .425 .404 .2141 .3661 .2462 .2248 .1822 .1662 .2273 (WY) 1985 .1985 .1985 .1987 .1987 .1985 .1952 .1986 .1986 .1986 .1986 MIN .5.51 .8.67 .4.77 .094 .000 .2.92 .90.9 .81.6 .36.8 .15.1 .6.19 .3.50 (WY) .1977 .1977 .1977 .1940 .1940 .1940 .1965 .1959 .1939 .1940 .1976 .1						812			20980	29477	19126	21185	
MIN 71 57 45 26 29 29 301 415 586 397 245 197 AC-FT 8660 5820 4280 2080 1610 12490 28110 41610 58470 37940 42020 43400 CFSM .08 .05 .04 .02 .02 .11 .25 .36 .53 .33 .37 .39 IN09 .06 .04 .02 .02 .13 .28 .42 .59 .38 .42 .44 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 1991, BY WATER YEAR (WY) MEAN 190 166 102 56.0 52.3 351 925 588 529 369 209 197 MAX 1996 1318 655 425 404 2141 3661 2462 2248 1822 1662 2273 (WY) 1985 1985 1985 1987 1987 1987 1985 1952 1986 1984 1952 1986 1986 MIN 5.51 8.67 4.77 .094 .000 2.92 90.9 81.6 36.8 15.1 6.19 3.50 (WY) 1977 1977 1977 1940 1940 1965 1959 1939 1940 1940 1976 1976 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR 396 396 3124 ANNUAL MEAN 159 396 3124 HIGHEST ANNUAL MEAN 159 396 396 3124 HIGHEST DAILY MEAN 5.8 Jan 8 2460 Jun 22 3100 Apr 10 1969 LOWEST ANNUAL MEAN 5.8 Jan 8 2460 Jun 22 10100 Apr 10 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969													
CFSM											397		
IN09													
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 1991, BY WATER YEAR (WY) MEAN 1906 1318 655 425 404 2141 3661 2462 2248 1822 1662 2273 (WY) 1985 1985 1985 1987 1987 1985 1952 1986 1984 1952 1986 1986 MIN 5.51 8.67 4.77 .094 .000 2.92 90.9 81.6 36.8 15.1 6.19 3.50 (WY) 1977 1977 1977 1940 1940 1965 1959 1939 1940 1976 1976 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR ANNUAL TOTAL ANNUAL TOTAL 57997.4 1259 ANNUAL MEAN 159 396 312a HIGHEST ANNUAL MEAN 159 396 312a HIGHEST DAILY MEAN 1030 Jun 18 2460 Jun 22 10100 Apr 10 1969 LOWEST DAILY MEAN 5.8 Jan 8 266 Jan 23 .00b ANNUAL SEVEN-DAY MINIMUM 6.0 Jan 4 29 Jan 21 .00 Jan 4 1940 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 25800													
MAX 1996 1318 655 425 404 2141 3661 2462 2248 1822 1662 2273 (WY) 1985 1985 1985 1987 1987 1987 1985 1985 1986 1986 1986 1986 1986 MIN 5.51 8.67 4.77 .094 .000 2.92 90.9 81.6 36.8 15.1 6.19 3.50 (WY) 1977 1977 1977 1940 1940 1965 1959 1939 1940 1940 1976 1976 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR 194437 ANNUAL TOTAL 57997.4 144437 ANNUAL MEAN 159 396 312a HIGHEST ANNUAL MEAN 159 396 312a 1307 1986 LOWEST ANNUAL MEAN 159 396 312a 1307 1986 LOWEST ANNUAL MEAN 1030 Jun 18 2460 Jun 22 10100 Apr 10 1969 ANNUAL SEVEN-DAY MINIMUM 6.0 Jan 8 26 Jan 23 .00b ANNUAL SEVEN-DAY MINIMUM 6.0 Jan 4 29 Jan 21 .00 Jan 4 1940 INSTANTANEOUS PEAK FLOW 1040 Jun 18 2710 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 ANNUAL RUNOFF (AC-FT) 115000 2865000 225800		ics of Mo							R YEAR	(WY)	260	200	107
MIN 5.51 8.67 4.77 .094 .000 2.92 90.9 81.6 36.8 15.1 6.19 3.50 (WY) 1977 1977 1977 1977 1940 1940 1965 1959 1939 1940 1940 1976 1976 1976 1976 1976 1976 1976 1976											1822	1662	
(WY) 1977 1977 1940 1940 1965 1959 1939 1940 1976 1976 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR WATER YEARS 1938 - 1991 ANNUAL TOTAL 57997.4 144437 ANNUAL MEAN 159 396 312a HIGHEST ANNUAL MEAN 159 396 312a HIGHEST DAILY MEAN 1030 Jun 18 2460 Jun 22 10100 Apr 10 1969 LOWEST DAILY MEAN 5.8 Jan 8 26 Jan 23 .00b ANNUAL SEVEN-DAY MINIMUM 6.0 Jan 4 29 Jan 21 .00 Jan 4 1940 INSTANTANEOUS PEAK FLOW 1040 Jun 18 2710 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 ANNUAL RUNOFF (AC-FT) 115000 286500 225800													
SUMMARY STATISTICS FOR 1990 CALENDAR YEAR 1944437 ANNUAL TOTAL 57997.4 144437 ANNUAL MEAN 159 396 312a HIGHEST ANNUAL MEAN 1307 1986 LOWEST ANNUAL MEAN 45.4 1940 HIGHEST DAILY MEAN 5.8 Jan 8 26 Jan 23 ANNUAL SEVEN-DAY MINIMUM 6.0 Jan 4 29 Jan 21 .00 Jan 4 1940 INSTANTANEOUS PEAK FLOW 1040 Jun 18 2710 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 ANNUAL RUNOFF (AC-FT) 115000 2865000 2225800													
ANNUAL MEAN 159 396 312a HIGHEST ANNUAL MEAN 1307 1986 LOWEST ANNUAL MEAN 45.4 1940 HIGHEST DAILY MEAN 1030 Jun 18 2460 Jun 22 10100 Apr 10 1969 LOWEST DAILY MEAN 5.8 Jan 8 26 Jan 23 .00b ANNUAL SEVEN-DAY MINIMUM 6.0 Jan 4 29 Jan 21 .00 Jan 4 1940 INSTANTANEOUS PEAK FLOW 1040 Jun 18 2710 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 ANNUAL RUNOFF (AC-FT) 115000 286500 225800		STATISTI	CS	FOR		AR YEAR			WATER YI	EAR	WATER Y	ARS 1938	- 1991
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN 1030 Jun 18 2460 Jun 22 10100 Apr 10 1969 LOWEST DAILY MEAN 5.8 Jan 8 26 Jan 23 .00b ANNUAL SEVEN-DAY MINIMUM 6.0 Jan 4 29 Jan 21 .00 Jan 4 1940 INSTANTANEOUS PEAK FLOW 1040 Jun 18 2710 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 ANNUAL RUNOFF (AC-FT) 115000 286500 225800										•	312a		
HIGHEST DAILY MEAN 1030 Jun 18 2460 Jun 22 10100 Apr 10 1969 LOWEST DAILY MEAN 5.8 Jan 8 26 Jan 23 .00b ANNUAL SEVEN-DAY MINIMUM 6.0 Jan 4 29 Jan 21 .00 Jan 4 1940 INSTANTANEOUS PEAK FLOW 1040 Jun 18 2710 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 ANNUAL RUNOFF (AC-FT) 115000 286500 225800	HIGHEST	ANNUAL M	ean										
LOWEST DAILY MEAN 5.8 Jan 8 26 Jan 23 .00b ANNUAL SEVEN-DAY MINIMUM 6.0 Jan 4 29 Jan 21 .00 Jan 4 1940 INSTANTANEOUS PEAK FLOW 1040 Jun 18 2710 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 ANNUAL RUNOFF (AC-FT) 115000 286500 225800	HIGHEST	ANNUAL ME DATLY ME	AN AN		1030	Jun 18		2460	Jun	22	10100	Apr 1	
INSTANTANEOUS PEAK FLOW 1040 Jun 18 2/10 Jun 22 11400 Apr 9 1969 INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 ANNUAL RUNOFF (AC-FT) 115000 286500 225800	LOWEST 1	DAILY MEA	N			Jan 8		26	Jan	23	.00)b	
INSTANTANEOUS PEAK STAGE 4.11 Jun 18 6.82 Jun 22 15.45 Apr 9 1969 ANNUAL RUNOFF (AC-FT) 115000 286500 225800					6.0 1040						.00 11400	Jan Apr	
ANNUAL RUNOFF (AC-FT) 115000 286500 225800 ANNUAL RUNOFF (CFSM) .085 .21 .17 ANNUAL RUNOFF (INCHES) 1.15 2.87 2.26	Instant	ANEOUS PE	AK STAGE		4.11			6.	82 Jun		15.45		9 1969
ANNUAL RUNOFF (INCHES) 1.15 2.87 2.26					115000			286500	21			,	
	ANNUAL 1	RUNOFF (I	NCHES)		1.15			2.8	87 87		2.26	3	
10 PERCENT EXCEEDS 320 932 841	10 PERC	ent excee	DS		320								
50 PERCENT EXCEEDS 116 245 106 90 PERCENT EXCEEDS 14 29 13													

a Median of annual mean discharges is 229 ft³/s.
 b Many days during 1940.
 e Estimated

05311000 MINNESOTA RIVER AT MONTEVIDEO, MN

LOCATION.--Lat 44°56'00", long 95°44'00", in NWkNWk sec.19, T.117 N., R.40 W., Yellow Medicine County, Hydrologic Unit 07020004, on right bank 100 ft upstream from bridge on U.S. Highway 212, at Montevideo, and 400 ft downstream from Chippewa River.

DRAINAGE AREA.--6,180 mi², approximately.

WATER DISCHARGE RECORDS

PERIOD OF RECORD. --July 1909 to September 1917, October 1917 to September 1929 (no winter records), October 1929 to current year. Prior to October 1939, published as "near Montevideo." Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS. --WSP 1035: 1919(M). WSP 1085: 1935-36. WSP 1508: 1912, 1925(M), 1929(M).

GAGE. --Water-stage recorder. Datum of gage is 909.12 ft above National Geodetic Vertical Datum of 1929. July 22 1909, to Feb. 4, 1932, nonrecording gage at bridge 600 ft downstream at present datum. Feb. 5, 1932, to Nov. 26, 1934, nonrecording gage at bridge 100 ft downstream at present datum.

REMARKS. --Records good except those for estimated daily discharges, which are fair. Flow regulated by Big Stone Lake since Apr. 17, 1937, Lac qui Parle since Jan. 1938, and Marsh Lake since Nov. 1, 1939. July 22,

		DISCHARG	E, CUBI	C FEET PER			YEAR OCTOB	ER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	76	250	e110	e105	e42	e80	1150	1140	1560	5350	2230	671
2	76	229	e110	e105	e42	e120		1200	1910	5350	2670	650
3	88	221	e110	e105	e42	e180	743	1190	1930	5210	3120	637
4 5	109 1 22	221 217	e110	e100 e90	e42	e200		1190	2370 2270	5070	3210	707
6	130	140	e110 e110	e85	e42 e42	e260 e295		1200 1210	2400	4940 4780	3550 3930	721 697
ž	133	119	e110	e80	e42	e295		1200	2350	4610	4270	559
8	133	120	e110	e80	e42	e295		1520	2330	4430	4510	610
9	133	118	e110	e79	e42	e295	642	1640	2430	4230	4630	671
10	134	86	e110	e79	e42	e295	642	1650	2570	4040	4710	871
11	139	71	e110	e78	e42	e295		1650	2690	3870	4680	951
12	223	70	e110	e78	e42	e295		1650	2740	3720	4600	1210
13 14	236 233	71 72	e110 e91	e78 e78	e42 e42	e350 e450	670 685	1550 1200	2730 2740	3570 3410	e4450 e4270	1330 1960
15	232	71	e110	e78	e42	e527	743	1160	2970 2970	3250	e4100	2100
16	232	95	e110	e78	e42	e510		1240	2920	2930	3970	2090
17	232	112	e110	e78	e42	e510	1130	1330	3030	2640	3820	1980
18	245	113	e110	e78	e42	506		1280	2960	e2500	3620	1930
19	228	113	e115	e78	e42	496		1250	2900	2370	3410	1860
20	227	114	e115	e78	642	499		1240	2920	2240	3140	1790
21	224	113	e118	e78	e42	500		1230	2830	2170	2760	1240
22	222 222	113 109	e115 e115	e78 e78	e42 e42	499 499		1180 1140	3340 4330	2910 2780	2490 2230	1050 1020
23 24	218	110	e113	e78	e42	502		1130	5870	2630	2070	1020
25	220	118	e110	e78	e42	543		1040	6290	2450	1950	1080
26	220	104	e108	e78	e45	673	712	1020	5880	2180	1880	1090
27	220	e110	e105	e78	e60	974	641	1030	5610	2130	1870	1080
28	221	e110	e105	e78	e74	1240		1050	5400	2280	1860	1060
29	217	e110	e105	e60		1320	653	1060	5110	2210	1780	1050
30 31	237 250	e110	e105 e105	e42 e42		1300 1200		1080 1310	4900	2140 2200	1530 819	1040
TOTAL MEAN	5832 188	3730	3395	2456 79,2	1229 43.9	16003		38960	100280 3343	104590 3374	98129 3165	34725 1157
MAX	250	124 250	110 118	105	43.9	516 1320	1210	1257 1650	6 29 0	5350	4710	2100
MIN	76	70	91	42	74 42	80		1020	1560	2130	819	559
AC-FT	11570	7400	6730	4870	2440	31740	50490	77280	198900	207500	194600	68880
CFSM	.03	.02	.02	.01	.01	.08		. 20	. 54	. 55	. 51	. 19
IN.	.04	.02	.02	.01	.01	.10	.15	.23	.60	.63	. 59	.21
	CICS OF N	MONTHLY MEAN			EARS 1909	- 199	1, BY WATE	R YEAR (WY)			
MEAN	293	297	222	= = =	169			1374	1169	931	452	303
MAX (WY)	3171 1987	3164 1985	1352	760 1087	740	4893 1985		7315 1986	5088 1984	5718 1920	3165 1991	2613 1986
MIN	.76	1.61	2 35	1 57	1987 1.06 1937	5.06		3.13	1.40	1.89	.60	. 57
(WY)	1934	1935	1935	1934	1937	1934	1934	1934	1934	1933	1933	1933
SUMMARY	STATIST	rics	FOR	760 1987 1.57 1934 1990 CALENI	DAR YEAR		FOR 1991	WATER YEAR		WATER	YEARS 1909	- 1991
ANNUAL	TOTAL			102772			434783					
ANNUAL		100437		289			1191			7438		1986
	' ANNUAL ANNUAL N									2961 4	4.3	1934
HIGHEST	DAILY	TEAN		1640	Jun 24		6290	Jun 25		34400	Apr 1	3 1969
LOWEST	DAILY ME	EAN		36	Feb 14		42	Jan 30		•	.00ъ	
		MUMINIM YA		39	Feb 12		42	Jan 30				5 1934
		PEAK FLOW		1690	Jun 22		6550	Jun 24		35100	Apr 1	2 1969
		PEAK STAGE		1640 36 39 1690 7.72 209100	Jun 22		14. 862400	33 Jun 24		21. 538100	bec Apr 1	2 1969
	RUNOFF (CESM)		.04	7		002400	19			. 12	
ANNUAL.	RUNOFF (OT DE 17		.63	•			62		1.	63	
	ENT EXC			519			3410			1930	-	
50 PERC	ENT EXC	EEDS		165			642			220		
90 PERC	ENT EXC	EEDS		46			75			32		

- a Median of annual mean discharges is 570 ft³/s. b Occurred several days in 1933, 1934, 1936.
- c From highwater mark.
- e Estimated.

05311000 MINNESOTA RIVER AT MONTEVIDEO, MN--Continued

WATER QUALITY RECORDS

PERIOD OF RECORD.--Water years 1961-67, 1972-76, 1989 to current year.

REMARKS.--Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
NOV										
01	1345	258	898	8.7	10.5	729	10.5	49	4.6	2500
29	1045	154	929	8.4	0.5	746	13.1	30	2.1	110
DEC										
27	1500	106	980	8.1	0.0	733	10.0	30	1.4	K7300
JAN	1,15	40	****	7.0		740	7.6	26	1.6	2600
31 FEB	1415	42	1130	7.8	0.5	740	7.6	26	1.6	2600
28	0930	74	990	8.4	0.5	732	13.9	32	2.3	K2900
MAR	0000		555	0.4	0.5	, ••	20.0			
28	1230	1200	458	7.9	2.0	732	13.8	51	5.5	
APR										
24	1320	1290	878	8.6	11.5	734	10.0	36	2.9	K120
MAY	1115	1140	040	• •	01 5	700	7.0	42	2.6	40
23 JUN	1115	1140	842	8.4	24.5	732	7.9	43	3.6	42
19	1125	2910	828	8.3	25.0	739	7.1	45	1.3	500
22	1445	3810	507	7.9	20.5	741	7.4	46	2.8	
24	1715	6310	628	8.2	22.5	738	6.4	36	2.1	
JUL										
02 <i>.</i>	0945	5360	712	8.4	23.5	734	6.7	43	2.1	
30	1330	2120	857	8.3	22.5	738	7.8	40	2.5	K4200
AUG										
20	1245	3150	834	8.4	23.0	740	7.8	41	3.9	 V04
28 SEP	0730	1860	844	8.7	25.5	739	7.4	46	4.6	K24
25	1230	1100	830	8.6	13.5	734	12.9	39		69

NOV 01 160 11	DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)
01 160	NOV									
29 120 11 4 DEC 27 2100		160							<1	<1
Z7 2100	29								11	4
JAN 31 950 6 6 FEB 28 440 7 6 MAR 28 87 47 25 9.2 240 0.2 47 11 APR 24 27 16 8 MAY 23 440 64 16 JUN 19 780 64 16 JUN 19 780 137 26 22 52 11 JUL 02 52 11 JUL 02 50 11 AUG 20 780 50 11 AUG 20 31 15 28 300 31 15 SEP										_
31 950 6 6 FEB 28 440 7 6 MAR 28 87 47 25 9.2 240 0.2 47 11 APR 24 27 16 8 MAY 23 440 64 16 JUN 19 780 22 6 22 137 26 24 137 26 24 52 11 JUL 02 50 11 AUG 20 780 50 11 AUG 20 31 15 SEP		2100							<1	<1
FEB 28 440 7 6 MAR 28 87 47 25 9.2 240 0.2 47 11 APR 24 27 16 8 MAY 23 440 64 16 JUN 19 780 22 6 22 137 26 24 52 11 JUL 02 52 11 AUG 20 780 50 11 AUG 20 31 15 28 300 31 15 SEP		050							6	6
28 440 7 6 MAR 28 87 47 25 9.2 240 0.2 47 11 APR 24 27 16 8 MAY 23 440 64 16 JUN 19 780 22 6 22 137 26 24 52 11 JUL 02 24 11 AUG 20 780 50 11 AUG 20 31 15 SEP		930							b	U
28 87 47 25 9.2 240 0.2 47 11 APR 24 27 16 8 MAY 23 440 64 16 JUN 19 780 22 6 22 137 26 24 5 52 11 JUL 02 52 11 AUG 20 780 50 11 AUG 20 31 15 28 300 31 15 SEP		440							7	6
APR 24 27 16 8 MAY 23 440 64 16 JUN 19 780 22 6 22 137 26 24 52 11 JUL 02 52 11 AUG 20 780 50 11 AUG 20 31 15 28 300 31 15 SEP										
24 27 16 8 MAY 23 440 64 16 JUN 19 780 22 6 22 137 26 24 52 11 JUL 02 24 11 30 780 50 11 AUG 20 31 15 28 300 31 15 SEP			87	47	25	9.2	240	0.2	47	11
MAY 23 440 64 16 JUN 19 780 22 6 22 137 26 24 52 11 JUL 02 24 11 30 780 50 11 AUG 20 31 15 28 300 31 15 SEP		27							16	
23 440 64 16 JUN 19 780 22 6 22 137 26 24 52 11 JUL 02 24 11 30 780 50 11 AUG 20 50 11 SEP		21					,		10	0
19 780 22 6 22 137 26 24 52 11 JUL 02 24 11 30 780 50 11 AUG 20 31 15 28 300 31 15 SEP		440							64	16
22 137 26 24 52 11 JUL 02 24 11 30 780 50 11 AUG 20 31 15 28 300 31 15 SEP										
24 52 11 JUL 02 24 11 30 780 50 11 AUG 20 31 15 28 300 31 15 SEP		780								
JUL 02 24 11 30 780 50 11 AUG 20 31 15 28 300 31 15 SEP										
02 780 24 11 30 780 50 11 AUG 20 31 15 28 300 31 15 SEP									52	11
30 780 50 11 AUG 20 31 15 28 300 31 15 SEP									0.4	11
AUG 20 31 15 28 300 31 15 SEP										
20 31 15 28 300 31 15 SEP		700							30	11
28 300 31 15 SEP									31	15
	28	300								
25 890 48 7								1		_
	25	890							48	7

MINNESOTA RIVER BASIN 05311000 MINNESOTA RIVER AT MONTEVIDEO, MN--Continued

DATE	BORON, DIS- SOLVED (UG/L AS B) (01020)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
NOV 01		0.03	0.02	0,20	0.10	0.26	0.26	1.7	1.3
29		0.02	0.02	0.30	0.30	0.44	0.44	1.9	1.4
DEC 27 JAN		0.01	0.01	0.50	0.50	0.63	0.63	1.7	1.7
31		0.02	0.02	0.80	0.78	0.74	0.74	1.9	1.5
FEB 28 Mar		0.01	0.01	0.57	0.57	0.32	0.32	0.5	0.4
28 APR	120	0.06	0.05	1.3	1.3	0.06	0.06	1.7	1.1
24 MAY		0.02	<0.01	0.7	0.70	0.03	0.02	1.3	0.9
23 JUN		0.08	0.06	1.1	1.1	0.16	0.16	1.4	1.1
19		0.11	0.09	2.4	2.4	0.12	0.10	1.4	1.2
22 24		0.12 0.11	0.09 0.09	2.4 2.1	2.3 2.1	0.15 0.10	0.14 0.10	1.1 1.3	1.0 1.0
JUL 02		0.10	0.07	1.9	1.9	0.08	0.07	1.1	0.8
30 AUG		0.04	0.04	1.6	1.7	0.09	0.09	1.6	1.2
20 28	==	0.02 0.01	0.02 <0.01	0.44 0.06	0.44 <0.05	0.01 0.01	0.01 0.01	1.5 1.7	0.8 0.9
SEP 25		0.02	0.02	1.7	1.7	0.01	0.01	1.3	0.9
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
NOV	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
NOV 01 29	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIĆ DIS- SOLVED (MG/L AS C)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)
NOV 01 29 DEC 27	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
NOV 01 29 DEC 27 JAN 31	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681) 9.3 8.5	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	PHYTO- PLANK- TONK CHROMO FLUOROM (UG/L) (70953)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <0.50 <0.30
NOV 01 29 DEC 27 JAN 31 FEB 28	PHORUS TOTAL (MG/L AS P) (00665) 0.13 0.15	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.06 0.13	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.09 0.09 0.13	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.06 0.09	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681) 9.3 8.5	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689) 1.2 0.6	MENT, SUS- PENDED (MG/L) (80154) 23 18	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 12.0 6.2 2.7	PHYTO- FLANK- TON CHROMO FLUOROM (UG/L) (70954) <0.50 <0.30
NOV 01 29 DEC 27 JAN 31 FEB 28	PHORUS TOTAL (MG/L AS P) (00665) 0.13 0.15	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.06 0.13 0.11	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.09 0.09 0.13	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.06 0.09 0.08	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681) 9,3 8.5 11	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689) 1.2 0.6 0.3	MENT, SUS- PENDED (MG/L) (80154) 23 18 69	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 12.0 6.2 2.7 0.7	PHYTO- FLANK- TON CHRCMO FLUOROM (UG/L) (70954) <0.50 <0.30 <0.20 <0.10
NOV 01 29 DEC 27 JAN 31 FEB 28 MAR 28 APR 24	PHORUS TOTAL (MG/L AS P) (00665) 0.13 0.15 0.13 0.18	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.06 0.13 0.11 0.16	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.09 0.09 0.13 0.18	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.06 0.09 0.08 0.16	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681) 9.3 8.5 11 9.0 9.4	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689) 1.2 0.6 0.3 0.4 1.1	MENT, SUS- PENDED (MG/L) (80154) 23 18 69 32	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 12.0 6.2 2.7 0.7 9.0	PHYTO- FLANK- TON CERCOMO FLUOROM (UG/L) (70954) <0.50 <0.30 <0.20 <0.10 0.40
NOV 01 29 DEC 27 JAN 31 FEB 28 MAR 28	PHORUS TOTAL (MG/L AS P) (00665) 0.13 0.15 0.18 0.26	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.06 0.13 0.11 0.16 0.17	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.09 0.09 0.13 0.18 0.17	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.06 0.09 0.08 0.16 0.16	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681) 9.3 8.5 11 9.0 9.4	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689) 1.2 0.6 0.3 0.4 1.1	MENT, SUS- PENDED (MG/L) (80154) 23 18 69 32 165 120	PHYTO- PLANK- TON CHROMO FLUGROM (UG/L) (70953) 12.0 6.2 2.7 0.7 9.0	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <0.50 <0.30 <0.20 <0.10 0.40
NOV 01 29 DEC 27 JAN 31 FEB 28 MAR 28 APR 24 MAY 23 JUN 19	PHORUS TOTAL (MG/L AS P) (00665) 0.13	PHORUS DIS- SOLVED (MG/L AS P) (00686) 0.06 0.13 0.11 0.16 0.17 0.09 <0.01 0.07	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.09 0.09 0.13 0.18 0.17 0.10 0.02	PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) 0.06 0.09 0.08 0.16 0.04 <0.01 0.06 0.11	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681) 9.3 8.5 11 9.0 9.4 10 9.4	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689) 1.2 0.6 0.3 0.4 1.1 1.5 1.0 2.1	MENT, SUS- PENDED (MG/L) (80154) 23 18 69 32 165 120 82 180 104	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 12.0 6.2 2.7 0.7 9.0 12.0 2.8 2.6 3.7	PHYTO- FLANK- TON CERCMO FLUGROM (UG/L) (70954) <0.50 <0.30 <0.20 <0.10 0.40 0.90 0.40 <1.00 <0.60
NOV 01 29 DEC 27 JAN 31 FEB 28 MAR 28 APR 24 MAY 23 JUN 19 22	PHORUS TOTAL (MG/L AS P) (00665) 0.13 0.15 0.18 0.26 0.22 0.06	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.06 0.13 0.11 0.16 0.17 0.09 <0.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.09 0.13 0.18 0.17 0.10	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.06 0.09 0.08 0.16 0.16 0.04 <0.01	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681) 9.3 8.5 11 9.0 9.4 10	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689) 1.2 0.6 0.3 0.4 1.1 1.5 1.0	MENT, SUS- PENDED (MG/L) (80154) 23 18 69 32 165 120 82	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 12.0 6.2 2.7 0.7 9.0 12.0 2.8 2.6	PHYTO- FLANK- TON CHROMO FLUOROM (UG/L) (70954) <0.50 <0.30 <0.20 <0.10 0.40 0.90 0.40 <1.00
NOV 01 29 DEC 27 JAN 31 FEB 28 MAR 28 AFR 24 MAY 23 JUN 19 24 JUN 19 24 JUN 02	PHORUS TOTAL (MG/L AS P) (00665) 0.13	PHORUS DIS- SOLVED (MG/L AS P) (00686) 0.06 0.13 0.11 0.16 0.17 0.09 <0.01 0.07 0.17 0.18 0.17	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.09 0.09 0.13 0.18 0.17 0.10 0.02 0.08 0.15 0.20 0.17	PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) 0.06 0.09 0.08 0.16 0.16 0.04 <0.01 0.06 0.14 0.15 0.14	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681) 9.3 8.5 11 9.0 9.4 10 9.4 10 9.4 10	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689) 1.2 0.6 0.3 0.4 1.1 1.5 1.0 2.1 >5.0 4.7 1.7	MENT, SUS- PENDED (MG/L) (80154) 23 18 69 32 165 120 82 180 104 215 81 89	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 12.0 6.2 2.7 0.7 9.0 12.0 2.8 2.6 3.7 2.1 2.2	PHYTO- FLANK- TON CHROMO FLUOROM (UG/L) (70954) <0.50 <0.30 <0.20 <0.10 0.40 0.90 0.40 <1.00 <0.60 <0.60 <0.70 <0.60
NOV 01 29 DEC 27 JAN 31 FEB 28 MAR 28 AFR 24 MAY 23 JUN 19 22 24 JUL 02 JUL 02 AUG	PHORUS TOTAL (MG/L AS P) (00665) 0.13	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.06 0.13 0.11 0.16 0.17 0.09 <0.01 0.07 0.17 0.18 0.17	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.09 0.09 0.13 0.18 0.17 0.10 0.02 0.08 0.15 0.20 0.17 0.19 0.11	PHORUS ORTHO, DIS- ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.06 0.09 0.08 0.16 0.16 0.04 <0.01 0.06 0.14 0.15 0.14 0.15 0.10	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681) 9.3 8.5 11 9.0 9.4 10 9.4 10 9.4 7.5 8.7 9.0	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689) 1.2 0.6 0.3 0.4 1.1 1.5 1.0 2.1 >5.0 4.7 1.7	MENT, SUS- PENDED (MG/L) (80154) 23 18 69 32 165 120 82 180 104 215 81	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 12.0 6.2 2.7 0.7 9.0 12.0 2.8 2.6 3.7 2.1 2.2 3.3 14.0	PHYTO- FLANK- TON CHROMO FLUOROM (UG/L) (70954) <0.50 <0.30 <0.20 <0.10 0.40 0.90 0.40 <1.00 <0.60 <0.60 <0.70 <0.60 0.80
NOV 01 29 DEC 27 JAN 31 FEB 28 MAR 28 APR 24 MAY 23 JUN 19 22 24 JUL 02 30	PHORUS TOTAL (MG/L AS P) (00665) 0.13	PHORUS DIS- SOLVED (MG/L AS P) (00686) 0.06 0.13 0.11 0.16 0.17 0.09 <0.01 0.07 0.17 0.18 0.17	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.09 0.09 0.13 0.18 0.17 0.10 0.02 0.08 0.15 0.20 0.17	PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) 0.06 0.09 0.08 0.16 0.16 0.04 <0.01 0.06 0.14 0.15 0.14	ORGANIĆ DIS- SOLVED (MG/L AS C) (00681) 9.3 8.5 11 9.0 9.4 10 9.4 10 9.4 10	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689) 1.2 0.6 0.3 0.4 1.1 1.5 1.0 2.1 >5.0 4.7 1.7	MENT, SUS- PENDED (MG/L) (80154) 23 18 69 32 165 120 82 180 104 215 81 89	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 12.0 6.2 2.7 0.7 9.0 12.0 2.8 2.6 3.7 2.1 2.2	PHYTO- FLANK- TON CHROMO FLUOROM (UG/L) (70954) <0.50 <0.30 <0.20 <0.10 0.40 0.90 0.40 <1.00 <0.60 <0.60 <0.70 <0.60

05313500 YELLOW MEDICINE RIVER NEAR GRANITE FALLS. MN

LOCATION. --Lat 44°43'18", long 95°31'07", in SWk sec.35, T.115 N., R.39 W., Yellow Medicine County, Hydrologic Unit 07020004, on right bank 50 ft downstream from highway bridge, 6 mi upstream from mouth, and 8 mi south

Unit 07020004, on right bank 50 ft downstream from highway bridge, 6 mi upstream from mouth, and c mi south of town of Granite Falls.

DRAINAGE AREA. --653 mi2.

PERIOD OF RECORD.--March 1931 to September 1935 (no winter records), October 1935 to September 1938, October 1939 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1508: 1931, 1934(M), 1937(M), 1946(M), 1950(M).

GAGE.--Water-stage recorder. Datum of gage is 960.64 ft above National Geodetic Vertical Datum of 1929.

Mar. 16, 1931, to June 13, 1938, nonrecording gage, on bridge 50 ft upstream at present datum. Oct. 12, 1939, to Nov. 30, 1952, nonrecording gage 500 ft downstream at present datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1919 reached a stage of 17.5 ft, from information by local residents, discharge, 25,200 ft³/s.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 300 ft³/s and maximum (*):

Date	. T :	D ime	ischarge (ft ³ /s)	Gage heigh (ft)	nt		Date	T	ime	Discharge (ft ³ /s)	Gage h	
June 7 June 18		130 315	*2,730 2,550	*6.93 6.77			June 2: July 1:		745 500	2,510 604	6.7 4.1	
		DISCH	ARGE, CUB	IC FEET PER	SECOND,	WATER YI	EAR OCTOBE	R 1990 TO	SEPTEMB	ER 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.2	11	e8.0	e4.4	e4.4	e6.2	e184	164	428	1030	139	21
Ž ·	4.4	8.7	e8.0	e4.4	e4.5	e6.6	e145	199	469	847	143	19
3							120	197	555	709	147	17
	7.4	16	e8.0	e4.4	e4.6	e7.0						
4	8.8	16	e8.0	e4.4	e4.7	e7.5	109	201	1230	608	137	16
5	9.8	12	e7.9	e4.4	e4 .9	e8.2	97	207	1450	528	126	15
6	9.3	16	e7.9	e4.4	e5.1	e 9.0	91	229	2010	460	120	14
7	8.3	14	e7.8	e4 . 4	e5.2	e9.9	87	225	2610	403	118	16
8	7.8	11	e7.8	e4 .4	e5.3	e11	83	206	2670	355	138	17
9	7.2	11	e7.7	e4.4	e5.4	e12	79	181	2410	327	208	18
10	7.0	12	e7.6	e4.4	e5.4	e13	75	164	1970	277	288	17
11	6.5	13	e7.6	e4.4	e5.4	e15	66	153	1510	341	271	17
12	7.3	12	e7,6	e4 . 4	e5.4	e16	66	149	1140	5 25	247	17
13	7.2	11	e7,6	e4.4	e5.4	e19	82	142	896	538	178	20
14	7.5	11	e7.5	e4.4	e5.4	e22	111	133	940	595	152	41
15	7.7	īī	e7.5	e4.4	e5.4	e28	145	123	1640	535	140	44
16	7.5	9.4	e7.4	e4.4	e5.4	e29	154	118	2010	439	132	50
17	8.8	8.7	e7.3	64.4	e5.4	e27	151	122	2330	362	122	43
18	9.0	9.4	e7.0	e4.4		e2 9	144	129	2460	298	111	35
			e6.7		e5.4		136	147	1850	244	102	28
19	8.7	9.4		e4.4	e5.4	e31						
20	9.4	9.8	e6.5	e4.4	e5.4	e39	124	155	1600	219	94	24
21	10	9.8	e6.2	e4.4	e5.4	e49	117	151	2250	190	86	21
22	9.5	9.4	e6.0	04. 4	e5.4	e56	110	143	2380	165	77	21
23	10	9.4	e5.8	e4.4	e5.4	e50	105	134	2460	149	70	21
24	28	9.4	e5.6	e4.4	e5.4	e32	96	122	2410	138	64	21
25	11	8.7	e5.4	e4.4	e5.4	e42	91	113	1980	124	57	21
26	5.6	e8.2	e5.2	e4 . 4	e5.5	e64	88	110	1560	. 115	51	21
27	5.4	e8.2	e5.0	e4.4	e5.6	e110	90	114	1290	117	45	21
28	8.7	e8.2	e4.9	e4.4	e5.8	e127	85	126	1 0 60	141	37	26
29	8.0	e8.0	e4.8	e4.4		e116	97	238	1040	163	32	21
30	8.0	e8.0	e4 .6	64.4		e89	137	381	1100	158	28	19
31	8.7		e4.5	e4.4		e158		441		147	26	
TOTAL	267.7	319.7	209.4	136.4	147.4	1238.4	3265	5417	49708	11247	3686	702
MEAN	8.64	10.7	6.75	4.40	5.26	39.9	109	175	1657	363	119	23.4
MAX	28	16	8.0	4.4	5.8	158	184	441	2670	1030	288	50
MIN	4.4	8.0	4.5	4.4	4.4	6.2	66	110	428	115	26	14
AC-FT	531	634	415	271	292	2460	6480	10740	98600	22310	7310	1390
CFSM	.01	.02	.01	.01	.01	.06	. 17	.27	2,54	.56	.18	.04
IN.	.02	.02	.01	.01	.01	.07	. 19	.31	2.83	.64	.21	.04
	TCE OF 1	.UZ JONTELT V M	LU.		.UI	- 1001	DV LATED			.04	.21	.04
DIVITOR	TOPOL	JON TULL W	EWN DWIW	FOR WATER Y	TAYS 1891	. 1991	, DI WALLA	1000 (41	, ,,,,	107	54.9	20 5
MEAN	32.0	35.6	21.2	11.0	14.9	202	445	170	238	107		38.5
MAX	409	274	135	75.5	97.1	933	3302	1087	2484	669	510	1005
(WY)	1987	1971	1987	1987	1966	1986	1969	1944	1984	1962	1953	1986
MIN	1.41	1.60	1.39	.90	.12	3.67	2.58	1.18	1.18	.34	.38	.47
(WY)	1937	1938	1936	1948	1959	1975	1934	1934	1934	1933	1934	1976
	STATIS:	rics	FOR	1990 CALENI	DAR YEAR	1	FOR 1991 W	ATER YEAR		WATER YEA	RS 1931	- 1991
ANNUAL				27903.3			76344.0					
ANNUAL				76.4			209			123a		
	ANNUAL									480		1984
	ANNUAL 1									8.32		1959
	DAILY I			105 0	Jun 19		2670	Jun 8		16400	Apr 1	l 0 1969
	DAILY M			2.3	Jan 28		4.4	Oct 2		.00c		
		AY MINIMU		2.4	Jan 28		4.4	Jan 1		.00		21 1948
		PEAK FLOW		1090	Jun 19		2730	Jun 7		17200	Apr 1	LO 1969
		PEAK STAG	E	4.99	Jun 19		6.9			14.90	Apr 1	l0 1969
		LOW FLOW					4 . 21				-	
	RUNOFF			55350			151400			88880		
	RUNOFF			. 12			.33	2		.19		
		(INCHES)		1.59			4.3			2,55		
	ENT EXC			238			526			254		
	ENT EXC			16			21			15		
	ENT EXC			2.8			4.6			2.1		
							.,•					

Median of annual mean discharges is 79 $\rm ft^3/s$. Occurred Oct. 1, 2, 3, 26, 27, but may have been less during period of ice effect. Many days in several years.

Estimated.

05315000 REDWOOD RIVER NEAR MARSHALL, MN

LOCATION.--Lat 44°25'49", long 95°50'43", in SE\s\N\s\ sec.12, T.111 N., R.42 W., Lyon County, Hydrologic Unit
07020006, on right bank 2.0 mi upstream from Redwood River diversion structure on southwest edge of town of
Marshall, MN. Prior to Apr. 10, 1980, at site 5 mi downstream.

DRAINAGE AREA.--259 mi².

PERIOD OF RECORD.--March 1940 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WDR MN-89-2: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,188.23 ft above National Geodetic Vertical Datum of 1929. March
1940 to April 9, 1980, nonrecording gage 5.0 mi downstream from present site at datum 43.35 ft lower (crest-stage
gage added June 12, 1968). Since March 1964, nonrecording gage and crest-stage gage on diversion channel 1.5 mi
downstream at datum 1,100.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Water diverted at medium and high stages into diversion channel 2.0 mi below station.

Diversion began Mar. 18, 1964. Unknown amount of natural diversion into Cottonwood River basin occurs at
extremely high stages 0.8 mi below station.

EXTREMES FOR PERIOD OF RECORD.--River only, maximum discharge, 5,370 ft3/s, June 17, 1957, gage height, 10.14 ft;
maximum gage height, 11.05 ft, Apr. 6, 1951, from floodmark; no flow at times.

Diversion only, maximum discharge, 4,440 ft3/s, Apr. 10, 1969, gage height, 78.45 ft; no flow on many days.
Combined flow, maximum discharge, 5,590 ft3/s, Apr. 10, 1969; no flow at times.

		DISCHARG	E, CUBIC	FEET PER	SECOND, W	ATER MEAN	YEAR OCTOBER VALUES	1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7 8 9	5.6 e6.6 e14 e12 e10 e8.9 e5.9 e5.9	7.5 7.5 7.5 7.6 7.6 7.6 7.5	e8.0 e8.0 e8.0 e8.0 e8.1 e8.3 e8.5 e8.6	e4.0 e4.0 e4.0 e4.0 e3.9 e3.6 e3.9 e4.0 e4.0	e4.1 e4.3 e4.6 e5.1 e5.6 e5.8 e6.5	e10 e11 e11 e11 e11 e12 e12 e12 e13	18 18 18 18 19 20 21	17 16 16 22 26 24 18 15 17 18	181 192 158 e300 e450 e430 e410 e380 e370 e310 e280	97 87 81 72 67 64 e61 e59 e61 63	22 22 21 20 19 18 35 95 73 60	8.2 7.6 6.9 5.6 6.9 9.6 22 19
12 13 14 15 16 17 18 19 20 21	5.6.4.3.0.3.9.9.5.9.9.9.9.9.9	7.6 7.9 7.9 8.2 8.2 8.2 8.2	e8.6 e8.5 e8.2 e7.8 e7.8 e7.8	e4.0 e4.0 e4.0 e4.0 e4.0 e4.0 e4.0	e6.9 e7.2 e7.6 e7.9 e8.2 e8.4 e8.7 e9.0 e9.2	e13 e13 e14 e14 e14 e15 e15	22 22 31 33 26 21 17 16 16	20 21 21 20 18 21 18 17	e240 220 204 247 263 209 176 161 158 282	100 85 71 64 56 52 46 46 42 40	37 30 26 22 21 20 19 18 18	15 16 31 28 20 16 14 12 12
22 23 24 25 26 27 28 29 30 31	6.9 6.9 7.6 7.6 7.6 7.6	e8.0 e8.0	e7.0 e7.2 e6.5 e6.0 e5.5 e5.1 e4.7 e4.4 e4.2	e4.0 e4.0 e4.0 e4.0 e4.0 e4.0 e4.0 e4.0	e9.3 e9.4 e9.5 e9.7 e9.9 e10	16 17	20 21 20 19 16	20 20 20 22 21 20 64 146 107 147	347 262 192 161 144 131 123 110	38 34 32 28 27 29 29 27 25	16 15 14 13 12 12 10 8.2 8.2 8.2	11 10 14 13 13 12 12 12 11
TOTAL MEAN MAX MIN AC-FT CFSM IN.	223.0 7.19 14 5.4 442 .03 .03	7.94 8.6 7.6 472 .03	225.3 7.27 8.6 4.1 447 .03 .03	123.4 3.98 4.0 3.6 245 .02 .02	205.8 7.35 10 4.0 408 .03 .03	562 18.1 63 10 1110 .07	20.1 33 16 1200 .08	986 31.8 147 15 1960 .12 .14	7195 240 450 104 14270 .93 1.03	1739 56.1 128 25 3450 .22 .25	776.6 25.1 95 8.2 1540 .10	401.8 13.4 31 5.6 797 .05
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL ANNUAL	20.0 222 1969 .029 1977 Y STATIST TOTAL MEAN	19.3 153 1980 .58 1977 ICS	11.4 81.7	6.50 42.2	11.5 101	111 571 1983 2.70 1965	1152 1969 7.36	90.8 596 1983 3.90 1981	93.5 752 1957 .83 1976	45.3 306 1962 .058 1976 WATER YE	18.1 184 1963 .042 1941 ARS 1940	19.5 292 1986 .007 1941 - 1991
HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	I ANNUAL ANNUAL M I DAILY ME SEVEN-DA TANEOUS P IANEOUS P RUNOFF (RUNOFF (EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EDS EDS		660 2.8 3.2 731 11.76 19850 .11 1.44 57 8.5 3.9			450 3.6 3.9 468b 10.47k 26340 .14 1.91 96 13 4.4	Jun 5 Jan 7 Jan 2 Jun 5 Jun 5		219 5.13 4760 .00 .00 5590 11.05 39860 .21 2.88 124 9.3 1.7	Apr C Jul 2 Apr 1	1983 1981 9 1969 8 1940 0 1969 6 1951

- a Medium of annual mean discharges in 38 ft³/s.
 b Highest observed (no gage height record).
 c Many days in several years.
 d Site and datum then in use.

05316500 REDWOOD RIVER NEAR REDWOOD FALLS, MN

LOCATION.--Lat 44°31'25", long 95°10'20", in SE\nE\ sec.9, T.112 N., R.36 W., Redwood County, Hydrologic Unit 07020006, on right bank 4 ft upstream from highway bridge, 3 mi west of town of Redwood Falls, and 8.5 mi upstream from mouth, DRAINAGE AREA.--629 mi².

PERIOD OF RECORD.--July 1909 to September 1914 (no winter records except 1911-12). August 1930 to September 1935 (no winter records), October 1935 to current year.

REVISED RECORDS.--WDR MN-89-2: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 972.33 ft above National Geodetic Vertical Datum of 1929. July 1909 to September 1914, nonrecording gage at bridge 20 ft downstream at datum 0.22 ft lower. August 1930 to Oct. 25, 1949, nonrecording gage, at bridge 20 ft downstream at present datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Natural discharge affected by unknown amount of interbasin flow between Yellow Medicine, Redwood, and Cottonwood River basins during extreme floods.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft3/s and maximum (*):

District Di	o ron conta	Discha		age height	Prearer or	ian Das	o discharge		Disch (ft	arge	Gage height	
Date	Time	Dischar (ft ³ /	5)	(ft)			Date		(ft)/s)	(ft)	
June 2 June 4	0100 1800	1,070 2,140		4,32 6,20			July July		1,3	340	4.97 3.21	
June 18	2200	1,94	,)	5.93			Aug.	8 1830	1,	140	4.32	
June 21	2200	*2,51	5	*6.68			Sep.	8 1430	- 7	51	3.74	
June 28	0545	2,010)	5.83			Sep.	15 0300		503	3.30	
		DISCHA	RGE, CUB	IC FEET PER	SECOND, V	VATER YI MEAN VA	EAR OCTOBER	1990 TO	SEPTEMBI	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.9	19	13	e7.1	e5.0	e12	121	203	924	592	141	35
2	7.4	20	15	e6.6	e5.1	e12	143	186	882	493	136	34
3	15	21	15	e6.3	e5.3	e12	140	183	726	435	139	32
4 5	25 40	22 21	14 13	e6.0 e5.7	e5.4	e13	131 114	216 239	1710 1960	386 344	131 117	30 29
6	30	20	13	e5.5	e5.7 e6.0	e13 e14	101	221	1680	308	106	28
ž	22	20	14	e5.4	e6.3	e15	92	202	1620	285	158	125
8	18	18	16	e5.3	e6.7	e16	84	183	1760	264	938	618
9	17	17	16	e5.2	e6.9	e18	77	173	1770	243	587	471
10	12 12	20 2 5	17 17	e5.1 e5.0	e7.2	e20 e21	71 59	158 147	1440 1060	226 285	356 324	250 187
11 12	14	23 21	17	e5.0	e7.5 e7.8	e21	50	140	896	1150	285	198
13	14	19	15	e5.0	e8.0	e26	99	133	672	1060	243	200
14	15	19	15	e5.0	e8.3	e28	201	122	696	632	195	341
15	15	19	15	e5.0	e8.7	e32	253	119	1330	454	164	441
16 17	14 15	18 18	13 13	e5.0	e8.9	e35	227 195	138 213	1500 1730	356 29 6	135 124	289 214
18	17	18	13	e5.0 e5.0	e9.1 e9.3	e40 e45	173	302	1900	253	111	175
19	18	18	15	e5.0	e9.5	e52	154	306	1830	217	96	147
20	20	17	14	e5.0	e9.5	e62	136	265	1690	188	88	136
21	24	17	e14	e5.0	e9.9	e73	122	237	2260	308	88	127
22	30	17	e14	e5.0	e10	103	115	214	2290	289 214	84 74	118 107
23 24	28 25	20 18	e13 e13	e5.0 e5.0	e10 e10	105 101	107 99	196 180	1870 1670	165	68	114
25	24	16	e12	e5.0	e11	105	91	165	1500	140	62	149
26	25	e15	e11	e5.0	e11	158	85	152	1250	123	57	144
27	24	12	e10	e5.0	e11	293	92	146	875	119	52	130
28 29	22 20	12	e9.8	e5.0	e11	226	93 105	147 319	930 796	190 236	47 44	121 113
29 30	20	12 12	e9.1 e8.2	e5.0 e5.0		186 158	168	632	637	208	42	108
31	18		e7.6	e5.0		105		626		167	39	
TOTAL	610.3	541	414.7	163.2	230.1	2123	3698	6863	41854	10626	5231	5211
MEAN	19.7	18.0	13.4	5.26	8.22	68.5	123	221	1395	343	169	174
MAX MIN	40	25 12	17	7.1	11	293 12	253 50	632 119	2290 637	1150 119	93 8 39	618 28
AC-FT	7.4 1210	1070	7.6 823	5.0 324	5 .0 456	4210	7330	13610	83020	21080	10380	10340
CFSM	.03	.03	.02	.01	.01	.11	.20	.35	2.22	.54	.27	.28
IN.	.04	.03	.02	.01	.01	. 13	. 22	.41	2.48	. 63	.31	.31
				FOR WATER Y					207	111	5 E C	44 7
MEAN MAX	42.2 395	47.6 541	25.9 245	11.7 75.9	15.7 167	218 1289	384 2880	179 1234	1898	114 621	55.6 640	41.7 673
(WY)	1987	1980	1983	1987	1983	1983	1969	1983	1957	1962	1979	1986
MIN	.84	.96	.46	.19	.20	1.54	14.6	2.75	1.01	.44	.51	.31
(WY)	1937	1936	1936	1940	1937	1965	1934	1934	1934	1934	1934	1976
	Y STATISTIC	CS	FOR	1990 CALEN	DAR YEAR	1	FOR 1991 WA	TER YEAR		WATER	YEARS 1909	- 1991
ANNUAL ANNUAL				23192.2 63.5			77565.3 213			1250	•	
	T ANNUAL MI	EAN		00.5			210			473	•	1983
LOWEST	ANNUAL MEA	AN							I.	10.		1959
	T DAILY ME			1220	Jun 18		2290	Jun 22		13200	Apr	9 1969
	DAILY MEAN SEVEN-DAY			4.1a 4.1	Jan 2		5.0b 5.0	Jan 11		•	.00d .01 Jan 2	5 1940
	TANEOUS PE			1450	Jun 17		2510	Jun 21		19700	Jun 1	8 1957
	TANEOUS PE			5.08			6.68			15.		8 1957
ANNUAL	RUNOFF (AC	C-FT)		46000			153900			90220		
	RUNOFF (CI			.10			.34				. 20	
	RUNOFF (II CENT EXCEE			1.37 137			4.59 621	1		258 258	. 69	
	CENT EXCEES			23			57			21		
	CENT EXCEE			6.0			6.5			2.	. 0	

a Occurred Jan. 2-Feb. 2. b Occurred Jan. 11-Feb. 1. c Median of annual mean discharges is 80 ft³/s.

d Several days in 1940 and 1959.

Estimated. e Estimated. f From floodmark.

05317000 COTTONWOOD RIVER NEAR NEW ULM, MN

LOCATION.--Lat 44°17'29", long 94°26'24", in SW\nE\ sec.33, T.110 N., R.30 W., Brown County, Hydrologic Unit 07020008, on left bank 600 ft upstream from highway bridge, 1.8 mi south of New Ulm, and 3.2 mi upstream from mouth.

DRAINAGE AREA.--1,280 mi², approximately.

PERIOD OF RECORD.--July 1909 to December 1913, March 1931 to March 1938, August 1938 to current year (winter records incomplete prior to 1936).

REVISED RECORDS.--WSP 355: 1912.

GAGE.--Water-stage recorder. Datum of gage is 796.83 ft above National Geodetic Vertical Datum of 1929. Jul

REVISED RECORDS.--WSF 355: 1912.

GAGE.--Water-stage recorder. Datum of gage is 796.83 ft above National Geodetic Vertical Datum of 1929. July 1, 1909, to Dec. 13, 1913, nonrecording gage at site 2.7 mi upstream at different datum. Mar. 15, 1931. to Mar. 31, 1938, nonrecording gage 2.2 mi upstream at datum 11.41 ft higher. Aug. 23, 1938, to June 25, 1948, nonrecording gage at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft³/s and maximum (*):

Date	Time	Di (scharge ft ³ /s)	Gage he			Date	Time	D:	ischarge (ft ³ /s)	Gage hei (ft)	ght
Apr 15 May 20 Jun 5	2130 1800 2100		1830 1560 4300	6.72 6.14 10.78)		Jul 12 Aug 9 Sep 14	2300 0330 2400		1580 1490 1330	6.20 6.00 5.64	
Jun 23	2030	DISCHARG	5440 E, CUBI	*11.99 C FEET PER	SECOND,	WATER YE MEAN VA	EAR OCTOBER	1990 TO	SEPTEMBE	ER 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	39	50	55	e23	e16	e27	556	760	1470	1750	169	71
2	38 55	50 53	53 51	e22 e22	e16 e16	e28 e28	524 511	863 813	2090 2480	1440 1200	161 155	66 64
4	67	58	48	e21	e16	e20 e29	511 504	896	3430	1020	148	61
5	71	57	49	e21	e16	e30	469	1020	4120	879	141	58
6 7	66	56	48	e21	e16	e30	423	1230	4100	767	132	55
7	59	54	49	e20	e16	e31	377	1090	3790	676	157	52
8 9	57 55	54 52	50 52	e20 e20	e17 e18	e33 e37	341 308	960 860	3650 3350	603 530	984 1410	51 65
10	53	53	54	e19	e19	e41	277	779	2680	475	1150	128
īĭ	53	54	56	e19	e20	e45	256	717	2230	480	937	159
12	61	54	58	e18	e21	e50	248	660	2450	1210	743	249
13	58	54	52	e18	e21	e56	417	623	2400	1460	579	314
14 15	55 51	54 54	52 52	e18 e17	e21 e21	e64 e72	874 1700	575 541	2120 2150	1110 901	458 376	1070 1230
16	48	55	52	e17	e20	e84	1750	576	1960	805	325	1000
17	49	57	58	e17	e20	e98	1470	727	1950	689	293	803
18	51	58	53	e16	e20	e110	1200	1060	1820	572	258	636
19	57 57	57 56	53	e16	e20	e122	1000 860	1340	1560	470 406	229 206	520 445
20 21	61	56 57	46 e41	e16 e16	e20 e23	e150 e170	756	1520 1450	1450 2560	361	206 186	390
22	60	57	e35	e16	e25	e200	679	1260	4440	333	173	348
23	57	57	e32	e16	e25	e250	623	1080	5330	298	158	316
24	54	54	e30	e16	e25	e290	564	932	4810	268	146	332
25 26	56 55	53 49	e29 e28	e16 e16	e25 e25	311 372	508 466	814 752	3870 2980	245 226	134 123	347 356
2 7	54	54	e27	e16	e25	701	460	715	2280	209	112	349
28	51	32	e26	e16	e26	1030	438	735	1940	204	101	338
29	51	51	e25	e16		893	498	1100	2450	200	92	323
30	52	55 	e25	e16		767	639	1390	2110	190	84	305
31 TOTAL	51 1702	1609	e24 1363	e16 557	569	640 6789	19696	1370 29208	84020	179 20156	77 10397	10501
MEAN	54.9	53 6	44.0	18.0	20.3	219	657	942	2801	650	335	350
MAX	71	58 32	58 24	23	26	1030	1750	1520	5330	1750	1410	1230
MIN	38			16	16	27	248	541	1450	179	7 7	51
AC-FT CFSM	3380 .04	3190 .04	2700 .03	1100 .01	1130 .02	13470 .17	39070 .51	57930 .74	166700 2.19	39980 .51	20620 .26	20830 .27
IN.	.05	.05	.04	.02	.02	.20	.57	.85	2.19	. 59	.30	.31
STATIST		NTHLY MEAN		OR WATER YE)	•	•	• • • •
MEAN	152	126	79.3		83.1	589	916	487	490	268	142	134
MAX (WY)	3208 1969	1099 1980	572 1980	236 1980	628 1983	2236 1983	7 075 1969	272 7 1983	3355 1984	1305 1947	1003 1979	2438 1986
MIN	4.57	7.97	5.77	1.61	1.47	13.9	40.0	7.57	8.58	4.37	1.05	3.28
(WY)	1934	1940	1936	1940	1940	1965	1959	1934	1911	1934	1934	1933
	STATISTIC	CS	FOR	1990 CALEND	DAR YEAR	I	OR 1991 WA	TER YEAR		WATER Y	EARS 1909	- 1991
ANNUAL				54373.0			186567			0.171		
ANNUAL	MEAN ANNUAL M	FAN		149			511			317b 1190		1969
	ANNUAL ME							•		41.1		1940
	DAILY ME			1990	Jul 28		5330	Jun 23		27100	Apr	9 1969
	DAILY MEAN			6.2	Jan 1		16a	7 10		.60		1 1934
	SEVEN-DAY ANEOUS PE			7.0 2630	Jan 1 Jul 28		16 5440	Jan 18 Jun 23		.6- 28700		1 1940 .0 1969
	ANEOUS PE			7.99	Jul 28		11.99			20.8	Sc Apr	8 1965
INSTANT	ANEOUS LO	W FLOW						-		. 50	Nov 2	7 1952
ANNUAL	RUNOFF (A	C-FT)		107800			370100			229400		
ANNUAL	RUNOFF (C)	ram) NCHFS 1		.12 1.58			.40 5.42			.2: 3.3		
10 PERC	ENT EXCEE	DS .		369			1450			695	•	
50 PERC	ENT EXCEE	DS		57			112			66		
90 PERC	ENT EXCEE	DS		9.9			20			11		

Jan. 18-Feb. 7.

Median of annual mean discharges is 224 ft3/s.

From floodmark (backwater from ice).

05317000 COTTONWOOD RIVER NEAR NEW ULM, MN--Continued

WATER QUALITY RECORDS

PERIOD OF RECORD.--Water years 1960-68, 1970-76, 1989 to current year. REMARKS. -- Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED 1 (MG/L)	DEMAND, I CHEM- ICAL (HIGH LEVEL) (MG/L)	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
30	1600	1420	874	8.2	22.0	730	8.1	85	2.2	258
DATE	RESI VOL TIL SUS PEND (MG (005	A- GE E, NITE - TOI ED (MG /L) AS	TRO- GE EN, NITE RITE DI FAL SOI G/L (MG N) AS	RIŤE GE IS- NO2+ LVED TOI G/L (MG N) AS	FAL SOL F/L (MG N) AS	n, nite nos ger s- ammor ved tota /l (mg/ n) as r	I, AMMONI IIA DIS LL SOLVI L (MG/I I) AS N	GEN, AMONIA ORGANI TOTAL (MG/I AS NI	4- GEN, + MONI IC ORGA DIS (MG	A + NIC 5/L N)
MAY 30	5	8 0.1	15 0.1	.0 15	15	0.06	0.06	4.4	1.6	;
DATE	PHOR PHOR TOT. (MG AS	US DI AL SOI /L (MG P) AS	RUS PHOF IS- ORTH VED TOT IS/L (MG P) AS	RUS ORT IO DIS CAL SOLV E/L (MG/ P) AS P	US CARB HO, ORGA - DIS ED SOLV L (MG	NIĆ SUS- - PENDE ED TOTA /L (MG/ C) AS (IIĆ SEDI- D MENT L SUS- L PENDI	TON CHROMO ED FLUORO L) (UG/I	O- PHY C- PLA TO CHRO M FLUC (UG	TO- .NK- .NM MO .ROM ./L)
MAY 30	0.	32 0.	12 0.	17 0.	11 6.	7 9.6	5 566	8.50	<1.	80

05317200 LITTLE COTTONWOOD RIVER NEAR COURTLAND, MN

LOCATION.--Lat 44°14'47", long 94°20'19", in SW\nE\sec.17, T.109 N., R.29 W., Blue Earth County, Hydrologic Unit 07020007, on right bank 30 ft downstream from bridge on State Highway 68, 0.7 mi above mouth, 1.5 mi south of Courtland.

DRAINAGE AREA.--230 mi², approximately.

PERIOD OF RECORD.--October 1973 to current year. September 1969 to September 1973, operated as a low-flow station

only.

GAGE. --Water-stage recorder. Datum of gage is 788.25 ft above National Geodetic Vertical Datum of 1929.

REMARKS. --Records fair.

EXTREMES FOR CURRENT YEAR. --Peak discharges greater than base discharge of 180 ft³/s and maximum (*):

Jun. 5 0330 *526 5.90 Sep. 14	0430	463 266 451	5.11 5.89 4.82 5.75
a Increasing negative shift.			
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO DAILY MEAN VALUES			
DAY OCT NOV DEC JAN FEB MAR APR MAY 1 16 16 16 6 3.9 3.2 15 140 174 3 16 16 15 3.8 3.2 15 140 174 4 24 17 13 3.5 3.5 17 126 174 4 24 17 13 4.3 4.3 7.1 19 109 301 6 21 17 14 63.4 3.7 19 109 301 6 21 17 14 63.2 12 20 83 251 9 16 18 15 43.2 12 20 83 251 9 16 18 15 63.2 17 20 76 243 10 15 19 16 63.2 13 20 68 215 11 14 18 18 7 63.2 15 23 65 179 11 14 14 18 17 63.2 15 23 65 179 13 15 17 13 63.3 16 22 228 168 14 15 18 12 63.4 13 20 400 154 15 15 18 15 63.5 12 20 401 15 15 18 15 63.5 12 20 401 15 15 18 15 63.5 9.8 23 375 16 18 16 18 13 63.6 9.8 23 375 17 14 17 16 63.6 9.8 23 375 18 16 18 15 19 16 63.6 9.8 23 17 14 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	101 350	JUL 159 132 115 103 91 81 71 63 553 138 423 324 220 159 121 100 83 72 64 40 36 34 40 36 33 39 83 39 84 40 36 30 40 40 40 40 40 40 40 40 40 40 40 40 40	AUG SEP 30 18 29 17 28 19 26 19 25 18 67 18 249 18 183 18 109 23 86 64 70 84 59 371 51 338 46 22 226 38 206 35 177 32 140 29 116 28 101 26 90 25 97 23 106 23 102 22 96 21 88 20 82 19 75 19 75 19 371
(WY) 1987 1983 1980 1980 1983 1983 1986 MIN .75 .70 .21 .15 .38 5.79 9.64 4.17 (WY) 1976 1977 1977 1977 1975 1990 1981	1984 2.39 1976	1983 .63 1988	1979 1986 .81 .54 1976 1976
SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR ANNUAL TOTAL 21510.86 32267.1 ANNUAL MEAN 58.9 88.4	19/0	WATER YEA	RS 1974 - 1991
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) ANNUAL RUNOFF (INCHES) BANNUAL RUNOFF (INCHES) BAN		160 9.18 1110 .02 .08 951 8.29b .01 40850 .25 3.33 160 16	1983 1989 Mar 16 1985 Sep 12 1977 Sep 11 1977 Jul 7 1983 Mar 26 1979 Sep 17 1977

a Jan. 7-12, Jan. 24-Feb. 3.
b Backwater from ice.
e Estimated.

05319500 WATONWAN RIVER NEAR GARDEN CITY, MN

LOCATION.--Lat 44°02'47", long 94°11'43", in SWkNE's sec.28, T.107 N., R.28 W., Blue Earth County, Hydrologic Unit 07020010, on left bank 25 ft downstream from bridge on County Highway 13, 1.5 miles west of Garden City, 7.3 mi upstream from mouth, and 9.2 mi downstream from Perch Creek.

DRAINAGE AREA.-- 812 mi².

PERIOD OF RECORD.--March 1940 to September 1945, September 1976 to current year. 1953, 1960, 1961, and 1969 (one or more discharge measurements each year).

REVISED RECORDS.--WDR MN-78-2: 1977.

GACE.--Water-stage recorder. Datum of gage is 905.05 ft above National Geodetic Vertical Datum of 1929. Prior to September 30, 1945, nonrecording gage at site 200 ft upstream and at datum 0.17 ft higher.

REMARKS.--Records good except those for the periods of estimated daily discharge, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 7, 1965, reached a stage of 18.89 ft at datum 0.17 ft higher, from floodmarks, discharge, 19,000 ft³/s.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 900 ft³/s and maximum (*):

Discharge Gage height

Discharge Gage height

Date Mar. 28 Apr. 17 May 7	Time 0730 1230 1230	1 2	13/s) ,400 cf ,970 .820	(ft) s 4.77 7.55 7.31	Girc		Date Jun. Jun. 2 Jul.		Time 1000 1830 0130	(ft ³ /s) *3,410 1,930 2,680	(ft *8.2 5.8 7.0) 1 1
May 21 May 29	0800 0330	2	, 530 , 650	6.84 5.27			Jul. 1 Sep. 1		0830 1130	1,290 1,490	4.5 4.9	5
		DISCHAR	GE, CUB	IC FEET PE		WATER YE		R 1990 TO	SEPTEME	ER 1991		
DAY	OCT 27	NOV 32	DEC 32	JAN e16	FEB e14	MAR	APR 962	MAY 1290	JUN 1270	JUL 2620	AUG 267	SEP 79
1 2	27	33	22	e16	e14 e14	e24 e24	921	1270	1310	2450	245	79 72
3	31	33	30	e15	e14	e25	849	1120	1690	2170	231	72
4 5	34 35	34 35	27 28	e15 e15	e14 e14	e25 e26	780 70 2	1200 1730	2280 2890	17 5 0 1390	211 192	75 69
6	36	35	28	e15	e14	e28	623	2490	3210	1150	177	63
7	31	36	29	e14	e19	e29	5 55	2760	3350	961 822	211	60
8 9	30 28	36 32	29 30	e14 e14	e21 e24	e3 2 e36	496 442	2630 2370	3140 2760	732	467 705	59 59
10	27	35	32	e14	e25	e40	395	2090	2460	652	675	60
11 12	28 29	35 3 5	34 36	e14	e26	e45	391 408	1790	2370 2160	642 1090	579 489	81 242
13	29 29	34	29	e14 e14	e25 e24	e50 e56	721	1510 1270	1800	1280	418	270
14	29	34	e28	e14	e22	e6 5	1560	1100	1510	1190	360	577
15 16	30 28	35 35	e28 e28	e14 e14	e21 e21	e74 e87	2310 2720	981 9 56	1570 1640	1040 890	311 275	1280 1450
17	28	33	e28	e14	e21	e100	2890	1150	1520	7 5 3	265	1260
18	28	33	e28	e14	e21	e115	2690	1590	1250	638	276	1000
19 20	30 34	3 2 31	e26 e25	e14 e14	e21 e22	e120 e189	2350 1960	2180 2460	1070 965	545 482	252 220	799 63 0
21	3 6	33	e24	e14	e22	e393	1620	2500	991	447	201	527
22 23	35 36	32 31	e23 22	e14 e14	e23 e23	e538 879	1360 1160	2260 1900	1270 1650	481 503	182 166	452 390
24	37	31	e21	e14	e23	988	996	1560	1890	573	150	388
25	36	33	e20	e14	e2 3	1120	864	1300	187 0	551	155	434
26 27	34 33	30 29	e19 e18	e14 e14	e23 e23	1220 1290	770 731	1130 1270	1670 1400	506 450	144 131	444 429
28	31	22	e18	e14	e23	1380	725	1590	1440	400	119	39 0
29 30	35 35	31 34	e17	e14		1350	744 1000	1620	2220 2530	361 334	110 97	3 54 338
31	3 2		e17 e16	e14 e14		1170 1010	1000	1470 1380	2330	304	87	
TOTAL	979	984	792	442	580	12528	34695	51917	57146	28157	8368	12403
MEAN MAX	31.6 37	32.8 36	25.5 36	14.3 16	20.7 26	404 1380	1156 2890	1675 2760	1905 3350	908 262 0	270 705	413 14 5 0
MIN	27	22	16	14	14	24	391	9 5 6	965	304	87	59
AC-FT CFSM	1940 .04	1950 .04	1 5 70 .03	877 .02	11 5 0 .03	24850 .50	68820 1.42	103000 2.06	113300 2.35	55850 1.12	16600 .33	24600 .51
IN.	.04	.05	.03	.02	.03	.57	1.59	2.38	2.62	1.29	.38	.57
				FOR WATER			BY WATER	YEAR (W)	()	212		100
MEAN MAX	157 614	173 813	105 4 5 3	49.3 228	74.9 626	485 1747	730 25 70	514 2023	700 1905	310 1098	174 1095	188 799
(WY)	1986	1980	1980	1983	1983	1983	1983	1944	1991	1983	1979	1942
MIN (WY)	5.37 1990	7.69 1977	3.76 ·1990	2.70 1977	2.39 1977	19.3 1940	33.7 1990	16.1 1940	17.3 1989	8.27 1940	6.56 1989	3.63 1976
	STATISTIC			FOR 1990 C			FOR 1991 W			ATER YEARS		
ANNUAL				4802			208991			210		
ANNUAL I	ANNUAL ME	AN		13	4		5 73			318 827		1983
LOWEST .	ANNUAL MEA	N						_	_	43.7		1989
HIGHEST	DAILY MEA DAILY MEAN	N		161	0 Jul 3.1 Jar	. 28 . 1	33 5 0 14a	Jun	7	5620 8	May 21 Dec 24,2	1944 5 1989
	SEVEN-DAY				3.8 Jan		14	Jan	7	1.9	Jan 20	1977
	ANEOUS PEA			191	0 Jul	. 28	3410		7	5620	May 21	1944
	ANEOUS PEA RUNOFF (AC			9 5 25		. 28	8.2 414500	21 Jun	7 23	9.84b 0600	May 21	1944
ANNUAL !	RUNOFF (CF	SM)			.16		.7	71	-	.39		
	RUNOFF (IN ENT EXCEED			37	2.20 1		9.5 1710	5/		5.33 850		
50 PERC	ENT EXCEED	S		3	5		115			92		
90 PERC	ENT EXCEED	S			6.4		16			8.7		

a Jan. 7 - Feb. 6. b Datum then in use. e Estimated.

05319500 WATONWAN RIVER NEAR GARDEN CITY, MN--Continued

WATER QUALITY RECORDS

PERIOD OF RECORD.--Water years 1960-61, 1969, 1977-78, 1980-81, 1989 to current year. REMARKS.--Letter K indicates non-ideal colony count.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC FRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
MAR 16 19 20 22 23 26 27 28 APR	1330 1145 1145 1145 1000 0930 0830 0945	87 120 182 538 819 1230 1260	845 725 694 547 475 612 604	8.7 7.6 8.3 8.3 8.8 8.1 7.7	0.5 1.0 0.5 1.0 1.0 3.5 4.0	744 738 733 728 723 726 728 732	13.0 14.0 13.0 12.9 12.2 12.2 12.4 12.6	20 49 29 56 70 53 45	2.0 4.5 5.1 5.3 7.1 5.1 4.4 3.5	100 91 87 69 63 80 80	35 32 29 22 19 25 25 24	32 30 23 16 12 9.6 10 8.9
03 10 MAY	1315 1345	852 393	790 913	8.2 8.4	9.5 9.0	742 748	11.4 11.7	32 32	1.6 2.3			
05 06 07 14 JUN	1900 1615 0930 1500	2040 2630 2780 1090	659 612 693 757	8.3 8.2 8.1 8.2	7.0 7.5 7.0 20.5	735 736 745 735	11.2 10.6 12.5 9.5	43 43 39 37	2.4 2.6 1.5 2.0	 	==	
05	1445	2950	565	8.3	19.0	743	7.8	37	1.7			
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	BORON, DIS- SOLVED (UG/L AS B) (01020)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)
MAR 16 19 20 22 23 26 26	SIUM, DIS- SOLVED (MG/L AS K)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	VOLA- TILE, SUS- PENDED (MG/L)	DIS- SOLVED (UG/L AS B)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)
MAR 16 19 20 22 23 26 27 28 APR 03	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.2 5.8 4.9 5.4 5.7 5.1 4.6	DIS- SOLVED (MG/L AS SO4) (00945) 170 130 86 63 82 95	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 41 40 30 29 31 32	RIDE, DIS- SOLVED (MG/L AS F) (00950) 0.3 0.3 0.3 0.3 0.3	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 3 9 27 83 183 183 146 97	VOLA- TILE, SUS- PENDED (MG/L) (00535) 3 9 5 15 30 24 14	DIS- SOLVED (UG/L AS B) (01020) 70 80 50 40 40 40	GEN, NITRITE TOTAL (MG/L AS N) (00615) 0.04 0.06 0.06 0.11 0.13 0.17 0.15	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.04 0.06 0.06 0.10 0.12 0.13	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) 1.7 2.1 3.5 5.0 8.7 13	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.1 2.1 3.5 5.0 8.6 13	GEN, APMONIA TOTAL (MG/L AS N) (00610) 0.27 0.24 0.23 0.33 0.34 0.32 0.26
MAR 16 19 20 22 23 26 27 28 APR 03	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.2 5.8 4.9 5.4 5.7 5.1 4.6 4.4	DIS- SOLVED (MG/L AS SO4) (00945) 170 130 130 86 63 82 95 88	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 41 40 30 29 31 32 28	RIDE, DIS- SOLVED (MG/L AS F) (00950) 0.3 0.3 0.3 0.3 0.3	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 3 9 27 83 183 146 97 95	VOLA- TILE, SUS- PENDED (MG/L) (00535) 3 9 5 15 30 24 14 26	DIS- SOLVED (UG/L AS B) (01020) 70 80 50 40 40 40 40	GEN NITRITE TOTAL (MG/L AS N) (00615) 0.04 0.06 0.11 0.13 0.17 0.15 0.17	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.04 0.06 0.10 0.12 0.13 0.13 0.14	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) 1.7 2.1 3.5 5.0 8.7 13 13 13	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.1 2.1 3.5 5.0 8.6 13 13 13	GEN, AMMONIA TOTAL (MG/L AS N) (00610) 0.27 0.24 0.23 0.33 0.34 0.32 0.26 0.26

MINNESOTA RIVER BASIN 05319500 WATONWAN RIVER NEAR GARDEN CITY, MN--Continued

DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAR												
16	0.27	1.1	1.1	0.27	0.20	0.23	0.20	4.9	0.6	23	3.3	0.30
19	0.24	1.3	1.3	0.33	0.28	0.27	0.25	7.0	0.7	17	3.5	0.30
20	0.23	1.4	1.1	0.31	0.20	0.23	0.20	7.7	0.5	35	5.2	0.50
22	0.33	2.7	1.5	0.55	0.23	0.24	0.22	9.0	5.0	450	12.0	0.70
23	0.34	3.0	1.8	0.50	0.20	0.24	0.20	8.0	4.9	313	8.9	0.70
26	0.32	2.8	2.1	0.44	0.16	0.21	0.11	8.3	4.3	431	7.2	0.40
27	0.25	1.9	1.7	0.37	0.15	0.18	0.11	7.6	3.3	404	5.3	0.40
28	0.24	2.5	1.8	0.39	0.15	0.17	0.10	9.3	3.3	306	4.2	0.40
APR												
03	0.10	1.8	1.8	0.15	0.10	0.12	0.10	6.8	1.7	242	2.8	<0.30
10	0.02	1.7	1.5	0.14	0.10	0.09	0.07	6.8	2.3	58	6.5	<0.50
MAY												
05	0.07	1.9	1.0	0.32	0.13	0.18	0.13	6.2		486	4.0	<1.20
06	0.10	2.6	1.3	0.37	0.17	0.20	0.16	6.9	4.5	351	4.0	<2.50
07	0.06	1.0	0.90	0.32	0.14	0.17	0.14	6.7	2.8	192	2.0	<1.20
14	0.04	1.9	1.3	0.18	0.07	0.06	0.06	6.4	1.8	83	6.3	<1.10
JUN						_						
05	0.05	1.8	1.1	0.32	0.20	0.27	0.20	7.4	2.2	407	2.6	<1.80

05320000 BLUE EARTH RIVER NEAR RAPIDAN, MIN

LOCATION.--Lat 44°05'44", long 94°06'33", in SE\SE\s sec.6, T.107 N., R.27 W., Blue Earth County, Hydrologic Unit 07020009, on left bank 0.2 mi downstream from powerplant (reactivated in 1984) operated by Rapidan Redevelopment Limited Partnership, 2 mi west of Rapidan, 3.5 mi downstream from Watonwan River, and 7.8 mi upstream from Le Sueur River.

DRAINAGE AREA.--2,430 mi², approximately.

PERIOD OF RECORD.--July 1909 to November 1910 (published as "at Rapidan Mills," no winter records), October 1939 to September 1945, July 1949 to current year.

REVISED RECORDS.--WSP 895: Drainage area. WSP 1508: 1910.

GAGE.--Water-stage recorder. Datum of gage is 807.83 ft above National Geodetic Vertical Datum of 1929. July 20, 1909, to Apr. 28, 1910, nonrecording gage at site 0.2 mi upstream at different datum. Apr. 29 to Nov. 12, 1910, nonrecording gage at site 800 ft upstream at different datum. Oct. 4 to Nov. 14, 1939, nonrecording gage at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

REMARKS. -- Records good except those for estimated daily discharges, which are fair.

			-	C FEET PER	DATÍV	MEAN V		rk taan I	SEPIEMBI	rk 1991		
DAY	OCT	NOV	DEC	JAN 45 54 54 59 52 42 49 47 51 58 61 63 55 66 67 66 58 61 53 52 52 53 1658	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	159	114	92	45	53	119	3180	3710	5360	5420	1850	447
2	156	117	92	54	52	126	3100	3720	5040	4950	1670	418
3	157	144	92	54	52	126 129 146 161	2920	3530	6270	4650	1400	417
4	157	144	86	39	52	146	2660	3510	8720	4060	1370	419
5	161	119	84	52	. 52	161	2430	4720	10200	3410	1220	373
<u>6</u>	163	101	86	42	53	183	2250	6840	10600	30 00	1020	348
7	163	121	86	49	52	175	2080	7730	11500	2 740	1130	348
8 9	157	138	85	40	68	207	1920	8070	12300	2280	1670 2460	289 290
10	151 149	130	0/ 86	4 / 5 1	67	279 367	1750 160 0	8580 8750	11800 1070 0	2210 2210	3170	259
11	125	113	87	58	87	433	1540	8130	9780	2240	3440	320
12	112	116	87	44	100	382	1530	7270	8960	2740	3240	473
13	126	117	87	61	102	319	1750	6480	8210	3180	2750	628
14	142	131	87	58	94	289	2980	5670	7780	3590	2170	620
15	157	134	87	48	101	356	4530	4960	7620	3220	1970	2210
16	117	103	87	61	84	320	5 660	4510	7090	2570	1670	2580
17	146	87	125	63	84	320	6160	4490	7120	2390	1560	2490
18	163 152 107	96	145	55	84	318	5930	4970	7120	2060	1460	1950
19 20	152	107	143	61	84	331	5320	5830	6990	1560	1600	1690
20	107	134	102	66	82	320 318 331 364 856	4820	6200 6410	6560 5890	1680 1480	1480 134 0	1460 1150
22	100	137	87	56	90	856 1880	4570 4300		5530	2470	1080	946
23	89 188 292	127	83	58	98	2280	3870	5830	5800	3550	1050	985
24	101	84	e64	61	99	2720	350 0	5270	6000	3350	950	984
25	97	84	50	47	98	3200	3150	4860	5850	2810	966	818
26	102	87	58	53	111	3400	2870	4490	5370	2380	874	1020
27	139	113	66	52	111	3520	2730	4680	4880	21 20	834	860
28	139	87	56	52	113	3570	2660	5 60 0	4740	205 0	735	733
29	138	92	70	52		3540	2850	5930	567 0	1800	672	722
30	133	92	50	53		3700	3280	6140	56 60	1950	618	699
31	128		64	53		3470		5890		2110	507	
TOTAL	4466	3438	2642	1658 53.5 67 39 3290	2331	37460	97890	179030	225110	86230	47926	26946
MEAN	144	115	85.2	53.5	83.2	1208	3263	5775	7504	2782	1546	898
MAX	292	144 84	145	67	113	3700	6160	8750	12300	5420	3440	2580
MIN	89 8860	6020	20	39	52	119	1530	3510	474 0 446500	1480 171000	507 95060	259 53450
AC-FT CFSM	.06	6820 .05	.04	.02	.03	74300 .50	194200 1.34	355100 2.38	3.09	1.14	.64	.37
IN.	.07	.05	.04	.02	.03	.57	1.50	2.74	3.45	1.32	.73	.41
										1.02		
STATIST	ICS OF MO	ONTHLY MEAN	DATA F	OR WATER YE	EARS 1909	- 1991	, BY WATER	R YEAR (W	()			
MEAN	487	449	277	165	207	1257	2460	1578	1847	1068	552	460
MAX	5121	2643	1521	967	1793	6277	13230	5775	7504	3725	5541	3547
(WY)	1969	1983	1983	1983	1983	1983	1965	1991	1991	1963	1979	1979
MIN	22.5	26.7	1983 16.0 1956	14.8	14.2	92.4	142	53.4	110	30.9	37.7	22.1
(WY)	1940	1940	1956	1977	1959	1968	1977	1940	1976	1940	1976	1976
SUMMARY	STATIST	cs	FOR	1990 CALEND	DAR YEAR	1	FOR 1991 W	VATER YEAR	₹	WATER YE	ARS 1909	- 1991
ANNUAL				199883			715127					
ANNUAL				548			1959			917		
	ANNUAL N									2877		1983
	ANNUAL MI	EAN					40000			105		1940
HIGHEST	DAILY ME	LAN		4720	Jul 29		12300	Jun 8		42500	Apr	9 1965 28 1955
LUMESI	CEALN-DV	MINTMIN		17	Jan 1		39 47	Jan 4	Š	7.4 8.1		24 1955
INSTANT	ANTONS P	CAK FLOW		6170	Jun 28		12800	Jun 8	i i	43100		9 1965
INSTANT	ANEOUS PI	AK STAGE		14 17 6170 10.09	Jun 28		12300 39 47 12800 10.0	9 Jun 8	3	21.36		9 1965
INSTANT	ANEOUS LO	AK STAGE W FLOW		10.09 396500 .23 3.06 1590			13	Jan 6	5,7,8,9	6.9		12 1955
ANNUAL .	RUNOFF (A	C-FT)		396500			1418000			664600		
	RUNOFF (FSM)		. 23			.8	31		.38		
ANNUAL	RUNOFF (NCHES)		3.06			10.8	35		5.13	5	
	ENT EXCEI ENT EXCEI	รมอ กฎ		1590			5870 473			2380 292		
	ENT EXCER	100		156 28			4/3 61			292 35		
SO LTWO	THI EVER			20			0.1			J J		

a From floodmark.
e Estimated.

Date

MINNESOTA RIVER BASIN

05320500 LE SUEUR RIVER NEAR RAPIDAN, MN

LOCATION.--Lat 44°06'40", long 94°02'28", in SWk sec.35, T.108 N., R.27 W., Blue Earth County, Hydrologic Unit 07020011, on right bank 600 ft downstream from highway bridge, 1.8 mi northeast of Rapidan, and 2.3 mi upstream from mouth.

DRAINAGE AREA.--1,100 mi², approximately.

PERIOD OF RECORD.--October 1939 to September 1945, July 1949 to current year.

GAGE.--Water-stage recorder. Datum of gage is 775.76 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 15, 1939, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft³/s and maximum (*):

Time

Discharge Gage height (ft³/s) (ft)

Date

Discharge (ft³/s)

Time

Gage height (ft)

		,	, - ,	(/						· /-/	,,	
Mar 24	1700	n 1:	870	4.54			June (6	1730	5,900	8.42	
Apr 16	1300		760	5.56			June 1		0700	3,520	6.34	
	233			*9.10					1630			
							July 12			1,800	4.45	
May 19	1600		390	6.22			July 2		0330	3,250	6.07	
May 29	0100	J 3,	020	5.84			Aug 10	U	1430	3,970	6.77	
		D = 0.011 + D.01										
		DISCHARG	E, CUBIC	FEET PER			YEAR OCTOBI	EK 1990	TO SEPTEME	ER 1991		
					DAILY	MEAN '	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
_						_						
1	55	60	e45	e23	e20	e45	1400	1650		721	637	190
2	50	53	e45	e22	e20	e45	1310	1720		658	558	175
3	53	50	e42	e22	e20	e47	1200	1670		609	492	167
4	53	48	e41	e22	e20	e48	1090	1980		554	438	153
5	53	49	e40	e22	e20	e53	994	3290		505	394	141
6	52	50	39	e21	e20	e58	915	5380		468	357	130
7	52	53	41	e21	e22	e58	841	6150		429	545	122
8	52	48	39	e21	e25	e66	780	6640		391	2990	115
9	59	46	37	e21	e28	e71	726	6260	3340	363	3620	107
10	64	52	37	e21	e28	e91	670	5230	2850	346	3870	101
11	71	57	38	e21	e28	e110	646	4240	2490	423	3860	126
12	69	56	39	e20	e28	e107	657	3560	2460	1570	3420	149
13	62	52	e40	e21	e29	e109	871	3060		1680	2490	147
14	57	51	e41	e21	e30	e130	1580	2740		1490	1970	784
15	52	49	e41	e21	e29	e150	2580	2610		1140	1570	923
16	52	45	e50	e22	e27	e167	2730	2340		896	1280	809
17	48	43	56	e22	e27	e190	2640	2200		759	1090	576
18	45	43	e51	e23	e27	e210	2440	2650		638	933	434
19	49	43	e45	e23	e27	e235	2270	3260		515	835	349
20	50	45	e39	e23	e28	346	2140	3150		445	734	303
21	57	45	e34	e22	e31	516	2080	2920		427	618	273
22	58	45	e30	e22		717	1890	2650		1540	552	249
23	56		e28	e22	e38	1150	1690	2400		2930	511	222
23 24	60	44			e38							236
24		42	e26	e20	e38	1510	1520	2260		3090	436	230
25	56	41	e25	e20	e38	1660	1370	2160		2390	391	249
26	54	42	e25	e20	e40	1500	1210	2080		1840	350	237
27	55	43	e24	e20	e42	1380	1190	2500		1560	318	241
28	51	e43	e24	e20	e44	1350	1200	2900		1280	287	242
29	48	e43	e23	e20		1460	1340	2840		1060	262	228
30	49	44	e23	e20		1480	1540	2520		896	238	219
31	59		e23	e20		1410		2270		755	212	
TOTAL	1701	1425	1131	658	812	16469	43510	97280		32368	36258	8397
MEAN	54.9	47.5	36.5	21.2	29.0	531	1450	3138		1044	1170	280
MAX	71	60	56	23	44	166 0	2730	6640		3090	3870	923
MIN	45	41	23	20	20	45	6 46	1650		346	212	101
AC-FT	3370	2830	2240	1310	1610	32670	86300	193000		64200	71920	16660
CFSM	.05	.04	.03	.02	.03	. 48	1.31	2.83		.94	1.05	.25
IN.	.06	.05	.04	.02	. 03	.55	1.46	3.26	2.58	1.08	1.22	.28
STATIST	ics of Moi	NTHLY MEAN	DATA FO	OR WATER Y	EARS 1940	- 199	1, BY WATER	R YEAR (WY)			
MEAN	270	219	121	65.6	107	760	1244	869		523	299	216
MAX	3300	1430	502	440	1299	3465	6563	3706	2742	2355	2602	1436
(WY)	1969	1971	1983	1983	1984	1983	1965	1960	1975	1968	1968	1968
MIN	7.41	11.1	5.04	2.96	1.68	33.0	48.3	18.8	40.4	20.6	8,20	7.55
(WY)	1990	1956	1959	1957	1959	1964	1957	1940		1988	1989	1976
	STATISTIC			1990 CALEN	DAR YEAR		FOR 1991 V				YEARS 1940	
ANNUAL 7				145628.5			317005					
ANNUAL N				399			869			464		
	ANNUAL MI	EAN		-						1339		1983
	ANNUAL MEA									51.	4	1977
	DAILY MEA			4210	Jul 31		6640	May	8	23400		8 1965
	DAILY MEAN			6.6	Jan 1		20	Jan			6a	
	SEVEN-DAY			7.2	Jan 1		20	Jan		ĩ.		9 1959
	ANEOUS PEA			4360			6780	May		24700		8 1965
	ANEOUS PEA				Jul 31		0,00	10 May	Ř		72b May 2	22 1960
	ANEOUS LOV			,.51	Jul Ji		9.1 29 628800	Dec	13	ee.	2	200
	RUNOFF (AC			288900			628800	Dec		336500		
	RUNOFF (CI			200000			028800	78		330300		
	RUNOFF (I			.36 4.88			10.6	 82		5.		
	ENT EXCEE			1260			2650			1280		
	ENT EXCEE			59			212			120		
	ENT EXCEE!			9.8			23			15		
ao FERCI	ONI PVOPEI	,,,		9.0			23					

a Occurred Feb. 9-25, 1959.

b From floodmark.e Estimated.

05320500 LE SUEUR RIVER NEAR RAPIDAN, MN--Continued

WATER QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1967-69, 1989 to current year.

REMARKS. -- Letter K indicates non-ideal colony count.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
MAR 16 19 20 21 23 26 APR	1715 1200 1015 0930 1515 1515 1330	167 227 321 467 1200 1510	671 658 596 499 503 696 723	8.7 8.8 9.2 9.5 8.5 7.5	0.5 2.5 1.0 2.0 0.5 6.5 5.0	746 742 733 728 729 726 728	14.2 13.9 19.8 15.7 13.2 12.6 11.5	23 21 31 43 75 64 53	3.4 3.1 4.2 4.7 6.9 4.3 6.8	83 86 79 75 72 95	25 25 24 22 21 27 28	22 23 21 18 12 11
03 09 MAY	1545 1200	1200 710	781 798	8.4 8.6	11.5 10.0	745 741	12.0 9.8	32 34	2.4 2.6			
06 07 08 14 JUN	0945 1515 1000 0915	5340 6330 6620 2760	517 577 573 704	8.1 8.6 8.2 8.5	6.5 8.5 9.0 19.5	739 748 748 736	11.1 12.4 12.0 9.0	92 82 60 41	4.1 2.9 2.7 1.7	 	 	
05 JUL 22 23 24 26	0930 1430 1100 1510 0830	5260 1810 2920 3090 1880	417 465 449 487 600	8.3 8.2 8.2 8.2 8.2	18.5 26.0 23.0 23.0 19.5	747 743 749 745 749	8.5 7.1 7.6 7.6 10.7	83 60 99 58 48	2.3 15.2 3.1 2.9 3.2	 	 	
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	BORON, DIS- SOLVED (UG/L AS B) (01020)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)
MAR 16 19 20 21 23 26 APR	3.9 3.9 3.9 4.1 4.4 4.1 3.7	68 69 60 61 47 63 70	34 38 36 32 28 32 34	0.3 0.3 0.2 0.3 0.3 0.3	15 41 31 110 669 355 221	10 10 7 26 70 43 26	60 60 50 50 30 40	0.03 0.02 0.03 0.05 0.07 0.11	0.03 0.02 0.03 0.04 0.06 0.07	5.9 5.4 5.1 5.9 10 19	5.5 5.4 5.1 5.9 10 19	0.11 0.09 0.11 0.19 0.26 0.17
03 09		 			100 77	19 15		0.07 0.05	0.05 0.05	20 17	18 16	0.04 0.02
MAY 06 07 08 14 JUN 05	 	 	 	 	664 602 438 118	61 100 68 23	 	0.18 0.20 0.19 0.10	0.10 0.10 0.10 0.10	19 22 22 21	19 22 21 20	0.16 0.15 0.12 0.04
					500	82		0.27	0.13	12	12	0.21

05320500 LE SUEUR RIVER NEAR RAPIDAN, MN--Continued

DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L	PHOS-PHORUS TOTAL	PHOS- PHORUS DIS- SOLVED (MG/L	PHOS-PHORUS ORTHO	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)
	AS N) (00608)	AS N) (00625)	AS N) (00623)	AS P) (00665)	AS P) (00666)	AS P) (70507)	AS P) (00671)	AS C) (00681)	(00689)	(80154)	(70953)	(70954)
MAR												
16	0.09	1.4	1.4	0.14	0.09	0.10	0.08	5.5	1.1	40	4.8	<0.50
19	0.09	1.5	1.5	0.19	0.10	0.10	0.10	7.0	1.1	140	5.3	0.40
20	0.02	1.6	1.2	0.16	0.11	0.11	0.10	7.2	1.6	238	9.7	0.60
21	0.16	2.3	1.3	0.26	0.11	0.14	0.11	7.9	1.9	365	12.0	0.60
23	0.26	1.9	1.5	0.46	0.19	0.20	0.18	9.5	8.1	843	16.0	0.90
26	0.17	3.1	2.1	0.51	0.16	0.19	0.10	8.9	>5.0	862		
27 APR	0.15	2.6	1.7	0.39	0.14	0.17	0.10	8.3	3.5	715	14.0	<1.30
03	0.04	1.5	1.5	0.21	0.07	0.12	0.07	7.6	2.4	303	8.2	0.60
09	<0.01	2.0	0.8	0.15	0.06	0.06	0.03	7.8	2.5	156	13.0	0.70
MAY												
06	0.15	2.9	1.4	0.49	0.21	0.32	0.21	10	>10	1770	3.0	<1.20
07	0.11	3.3	1.2	0.58	0.20	0.31	0.20	10	>10	1110	1.8	<1.10
08	0.11	2.8	0.8	0.49	0.18	0.29	0.18	9.2	5.6	1040	3.0	<1.20
14	0.04	2.4	1.8	0.14	0.10	0.11	0.08	8.9	2.4	468	3.6	<1.10
Jun												
05	0.12	2.7	1.9	0.61	0.35	0.45	0.33	8.6	>7.0	1040	<2.6	<1.60
JUL	0.00			0.66	0.01	0.10	0 10	7 9	~E 0	2440	20	-1 40
22	0.03	4.0	1.7	0.66	0.21	0.19	0.19	7.3	>5.0	2440 1280	3.8	<1.40
23	0.03	2.4	1.4	0.57	0.26	0.25	0.25	3.7	>5.0		2.8	<1.40
24	<0.01	2.0	1.4	0.56	0.28	0.30	0.25	9.0	>5.0	712 460	3.2	<1.20 <0.80
26	<0.01	2.4	1.2	0.43	0.24	0.25	0.22	9.1	4.3	400	3.8	~0.60

05325000 MINNESOTA RIVER AT MANKATO, MN

LOCATION.--Lat 44°09'58", long 94°00'57", in NW\nE\sec.13, T.108 N., R.27 W., Nicollet County, Hydrologic Unit 07020007, on left bank 12 ft downstream from bridge on U.S. Highway 169 in North Mankato, 1.1 mi downstream from Blue Earth River and at mile 107.1 upstream from Mississippi River.

DRAINAGE AREA.--14,900 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --May 1903 to current year (no winter records 1904, 1906-10, 1918-29). Monthly discharge only for some periods, published in WSP 1308. Published as "near Mankato": 1903-21.

REVISED RECORDS. --WSP 875: 1917. WSP 955: Drainage area. WSP 1085: 1929. WSP 1238: 1903, 1908, 1919. WSP 1508: 1916(M), 1918(M), 1926(M), 1928, 1930, 1932(M), 1938(M). WDR-MN-76-1: 1881(M).

GAGE. --Water-stage recorder. Datum of gage is 747.92 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 19, 1921, nonrecording gage, at site 1.1 mi upstream at datum 6.4 ft higher. Mar. 15, 1922, to Nov. 30, 1924, nonrecording gage, and Dec. 1, 1924 to May 24, 1971, recorder at site 0.5 mi downstream at present datum. May 25, 1971 to Aug. 14, 1977, recorder at site 0.2 mi downstream at present datum. Aug. 14, 1977 to July 27, 1978, nonrecording gage at present site and datum.

REMARKS. --Records good except those for estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD. --Maximum stage known, 29.9 ft, Apr. 26, 1881, present site and datum, from floodmark (discharge, 110,000 ft³/s).

		DISCHARG	E, CUE	IC FEET P	ER SECOND,	WATER MEAN	YEAR OCTOB	ER 1990 T	O SEPTEMB	ER 1991		
					D11111		VILLOED.					
DAY	OCT	NOA	DEC	JAN	FEB	MAR		MAY	JUN	JUL	AUG	SEP
1	580	603	437	e315	e270	e400		8640	14200	23900	8160	3810
2	551	590	391	e305	e270	e410		8950	14000	22700	7950	3520
3 4	562 579	610 643	389 409	e300 e295	e270 e275	e425 e440		9030 9760	16100	20800 18600	7530 7290	3210 2820
5	576	6 5 4	436	e293 e290	e2/3 e280	e440		12800	21200 25700	16700	7290 7140	2520 2580
6	595	613	488	e285	e280	e485		18200	28300	15200	6990	2430
ž	604	603	488	e280	e285	e520		20300	30300	14100	8010	2370
8	592	621	461	e280	e300	e550		20900	31900	12800	12400	2310
9	576	624	459	e280	e310	e600		21100	32800	12000	14800	3080
10	576	628	459	e280	e320	e660		20200	32000	11200	16300	4500
11	563	596	465	e275	e335	e780		18500	30100	10900	16600	5260
12	534	574	472	e275	e345	e820		16600	28100	12800	16100	5660
13	533	552 530	443	e275	e350	e870		14800	26200	14100	14500	5930
14	539	538 545	382	e275	e355	e980		13200	25000	14500	12900	8040
15 16	540 532	545 526	462 469	e280 e280	e350 e325	e1080 e1140		12100 11000	25000 24000	14500 14500	11700 10700	10300 11000
17	491	465	511	e280	e315	e1220		10600	22900	14400	10000	10500
18	587	454	596	e280	e325	e1360		11500	22200	13400	9330	9700
19	601	463	e534	e280	e335	e1620		13700	21900	e11800	9140	9140
20	610	472	e336	e280	e350	2030		14600	22100	e10600	8680	8560
21	617	479	e262	e275	e360	2650		14900	22300	e9830	8320	7990
22	614	489	e300	e270	e360	4210	10400	14400	23500	e10400	7730	7170
23 24	834	494	e350	e270	e370	5510		13400	25500	e12300	7430	6690
24	712	468	e430	e270	e370	6450	8710	12400	26500	e12200	7060	6110
25	627	451	e425	e267	e375	7160		11500	26800	e11000	6550 6000	5630
26 27	607 652	460 491	e410 e385	e267 e267	e380 e385	7350 7440		10700 10800	26500 25300	e10100 e9350	5460	5340 5010
28	652	416	e370	e267	e395	8300		12000	23900	e8730	4970	4670
29	620	392	e350	e267	4050	8900		12900	23900	e8350	4590	4440
30	623	449	e335	e270		8990		14000	24600	e8200	4320	4270
31	613		e325	e270		8500		14600		8440	4090	
TOTAL	18492	15963	13029	8650	9240	92310	246310	428080	742800	408400	282740	172040
MEAN	597	532	420	279	330	2978	8210	13810	24760	13170	9121	5735
MAX	834	654	596	315	395	8990	15000	21100	32800	23900	16600	11000
MIN	491	392	262	267	270	400		8640	14000	8200	4090	2310
AC-FT	36680	31660	25840	17160	18330	183100	488600	849100	1473000	810100	560800	341200
CFSM IN.	.04	. 04 . 04	.03	.02 .02	.02 .02	.20	. 55 . 61	.93 1.07	1.66 1.85	.88 1.02	.61 .71	.38 .43
	.05 TCS OF	MONTHLY MEAN				.23	LO. Trauva t	D VEAD (W		1.02	./1	.43
MEAN	1418	1311	826	515	664	4094		5162	5490	3890	1935	1492
MAX	14600	6675	4770	2672	4505	18230		19570	24760	16510	13040	10170
(WY)	1969	1971	1983	1983	1983	1983		1986	1991	1908	1979	1903
MIN	66.1	83.5	80.9	61.5	58.4	132	609	101	194	58.3	37.4	5 6.6
(WY)	1934	1934	1934	1940	1940	1934	1931	1934	1934	1934	1934	1934
SUMMARY		STICS	FOR		ENDAR YEAR		FOR 1991	WATER YEA	R	WATER	YEARS 1903	- 1991
ANNUAL				814834			2438054 6680			3013 <i>a</i>		
ANNUAL HIGHEST		MEAN		2232			0000			9260	1	1986
ていなでです	AMMITAT	MEAN								136		1934
HIGHEST	DATLY	MEAN MEAN DAY MINIMUM PEAK FLOW PEAK STAGE		16900	Jul 30		32800	Jun	9	92700	Apr	10 1965
LOWEST	DAILY	ÆAN		101	Jan 1	·	262	Dec 2	1	31	Aug	3 1934
ANNUAL	SEVEN-I	MUMINIM YAC		106	Jan 1		268	Jan 2	23	33	Ju1	29 1934
INSTANT	ANEOUS	PEAK FLOW		17100	Jul 30		33100	Jun		94100	Apr	10 1965
INSTANT	ANEOUS	PEAK STAGE		15.	05 Jul 30		21.	37 Jun	9	29.		10 1965
T110 11311 1	Tan DOOD	LOW FLOW		4045555						26t	Aug	4 1934
ANNUAL	KUNOFF	(AC-FT)		1616000	1.5		4836000	, e		2183000	20	
ANNUAL	RUNOFF	(CFSM) (INCHES)		2.	15		e.	45 09		٠,	. 20 . 75	
10 PERC	יצא ידמאי יעא ידמאי	LEEUG (THCUE9)		5150	03		18300	u s		7910	. , ,	
50 PERC	ENT EX	CEEDS		775			4040			1080		
90 PERC		CEEDS		1616000 2. 5150 775 178			298			180		
		· -										

a Median of annual mean discharges is 2,550 ft^3/s . b Minimum observed.

e Estimated.

MIN

MINNESOTA RIVER BASIN

05325000 MINNESOTA RIVER AT MANKATO, MN--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963-66, 1968 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1967 to September 30, 1981, October 1982 to current year (fragmentary records).
SUSPENDED-SEDIMENT DISCHARGE: October 1967 to current year.

REMARKS.--Sediment samples were collected approximately daily by an observer during the open-water period. In general, daily concentrations and loads for the open-water period are considered good. During the winter period, daily sediment concentrations and loads are based primarily on concentrations of sediment in samples that were collected monthly and on daily water-discharge records. Sediment records for the winter period are considered fair. Water temperatures were obtained by the observer approximately daily during the open-water period and monthly by U.S. Geological Survey personnel during the winter period. Some temperatures are not multished because of guarationable values. published because of questionable values.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURES: Maximum daily, 31.0°C, July 4-9, 1989; minimum daily, 0.0°C on many days each year. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,850 mg/L, Aug. 7, 1968; minimum daily mean, 9 mg/L, Jan. 15-19, 1991. SEDIMENT LOADS: Maximum daily, 247,000 tons, Apr. 9, 1969; minimum daily, 5.2 tons, Nov. 6, 1976.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURES: Maximum daily observed, 29.0°C, July 21; minimum daily observed, 1.0°C, Dec. 1, 3, SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,200 mg/L, May 6; minimum daily mean, 9 mg/L, Jan. 15-19. SEDIMENT LOADS: Maximum daily, 59,600 tons, May 6; minimum daily, 6.8 tons, Jan. 15-19.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 ONCE-DAILY DAY OCT JUL AUG SEP NOV DEC FER APR MAY JUN JAN MAR 25.0 13.0 1.0 ___ ---2.0 ---22.0 2 17.5 17.0 16.5 10.0 ------10.0 10.0 23.0 26.0 24.0 24.5 ------1.5 9.0 1.0 23.0 24.0 23.0 3 10.3 23.0 23.5 ---23.5 1.0 20.5 24.0 4 5 1.5 18.0 5.0 10.5 20.0 24.5 23.5 6 14.5 1.5 2.0 2.0 11.0 7.5 20.5 24.0 21.5 24.0 ---13.5 13.0 ---2.0 2.5 1.5 10.5 7.0 19.5 24.0 24.0 19.5 4.0 ---2.0 2.0 8 10.0 9.5 21.0 23.0 12.5 2.0 19.5 12.0 22.0 1.5 10.0 24.0 23.0 10 13.0 4.0 1.5 1.5 10.0 16.0 23.0 20.0 20.5 2.0 11 13.5 4.0 ------2.0 9.0 12.0 23.5 22.0 20.0 4.5 7.0 10.5 ------24.0 13.5 13.0 2.0 23.0 24.0 12 2.0 19.0 20.0 13 ------8.0 20.0 24.0 1.5 24.0 20.5 13.0 7.0 24.0 24.5 15 12.0 ---------20.0 22.5 24.0 20.0 10.0 2.0 7.5 24.0 16 2.0 8.0 20.0 23.0 26.5 20.0 11.5 10.0 ---------2.0 2.0 3.0 9.5 14.0 13.0 14.0 23.0 24.0 23.5 26.5 21.0 23.0 23.5 17.5 14.0 12.5 17 18 7.0 ------7.0 9.0 19 10.0 20 10.5 9.0 ---------27.5 22.0 13.0 21 22 10.5 11.0 23.5 24.5 24.0 9.0 ---20.5 ---2.0 9.5 17.0 29.0 13.5 26.5 24.5 ---3.0 2.0 10.0 23.0 19.0 20.5 13.0 12.5 5.0 ---23 10.0 5.0 ---22.0 24 5.0 ___ ---2.0 12.0 19.0 23.0 24.0 10.0 ---25 10.0 3.0 ---1.5 2.5 12.5 18.5 23.5 23.5 24.5 12.0 10.0 3.0 25.0 26.0 26.5 22.0 26.0 26 3.0 12.5 10.0 ---2.0 3.0 26.5 12.0 ---28 10.0 ------15.0 21.5 21.0 27.0 13.5 ---29 10.5 2.0 ------15.0 22.0 25.5 21.5 28.0 13.5 30 10.5 2.0 ---12.0 22.0 27.0 23.0 28.0 14.0 ---------31 12.0 ---21.0 23.5 MEAN ___ ___ ---MAX

05325000 MINNESOTA RIVER AT MANKATO, MN--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	
	OCTO	BER	NOVEM	BER	DECEM	BER	JANUA	RY	FEBRU	ARY	MAR	CH .
1 2 3 4 5	39 45 65 57 45	61 67 99 89 70	50 42 43 39 33	81 67 71 68 58	32 40 40 35 35	38 42 42 39 41	10 10 10 10	8.5 8.2 8.1 8.0 7.8	45 45 46 53 65	33 33 34 39 49	21 20 24 22 20	22 28 26
6 7 8 9 10	46 47 38 34 35	74 77 61 53 54	28 28 27 24 45	46 46 45 40 76	38 40 35 45 44	50 53 44 56 55	10 10 10 10 10	7.7 7.6 7.6 7.6 7.6	77 78 69 83 93	58 60 56 69 80	27 51 57 57 42	72 85 92
11 12 13 14 15	40 49 48 56 56	61 71 69 81 82	59 37 30 55 46	95 57 45 80 68	36 45 50 50 45	45 57 60 52 56	10 10 10 10 9	7.4 7.4 7.4 7.4 6.8	86 84 84 85 86	78 78 79 81 81	40 37 38 49 39	82 89 130
16 17 18 19 20	52 58 42 33 37	75 77 67 54 61	46 46 45 38 46	65 58 55 48 59	30 17 11 10 10	38 23 18 14 9.1	9 9 9 9 20	6.8 6.8 6.8 6.8	87 87 90 96 97	76 74 79 87 92	41 55 70 77 110	181 257 337
21 22 23 24 25	67 47 77 50 45	112 78 173 96 76	64 64 36 33 44	83 84 48 42 54	10 10 10 10 10	7.1 8.1 9.4 12 11	27 34 35 38 41	20 25 26 28 30	99 83 75 57 44	96 81 75 57 45	324 698 596 470 534	7990 8870 8190
26 27 28 29 30 31	48 43 37 43 49 52	79 76 65 72 82 86	29 24 37 48 33	36 32 42 51 40	10 10 10 10 10	11 10 10 9.4 9.0 8.8	43 44 45 45 45	31 32 32 32 33 33	38 34 25 	39 35 27 	556 467 400 368 377 405	9380 8960 8840 9150
TOTAL		2398		1740		937.9		479.3		1771		967 76
	A:	PRIL	t	YAY	J	UNE	JU	LY	AUGU	ST	SEPTEM	BER
1 2 3 4 5	411 382 334 260 190	8840 7850 6620 4890 3280	152 120 186	5300 3670 2930 4900 16600	387 353 907 926 719	14800 13300 40200 53000 49900	144 154 170 165 173	9290 9440 9550 8290 7800	167 164 158 155 159	3680 3520 3210 3050 3060	105 119 134 122 113	1080 1130 1160 929 787
6 7 8 9 10	169 162 170 180 143	2690 2350 2280 2220 1630	910 636 581	59600 49900 35900 33100 27300	538 506 438 389 358	41100 41400 37700 34400 30900	189 194 200 195 186	7760 7390 6910 6320 5620	186 280 659 451 274	3510 6050 22100 18000 12100	108 103 105 308 280	709 659 655 2620 3400
11 12 13 14 15	128 136 391 776 693	1400 1460 5540 16100 22100	364 334 330	21300 16300 13300 11800 10700	333 312 289 203 213	27100 23700 20400 13700 14400	226 430 311 253 212	6650 15000 11800 9900 8300	332 266 206 210 189	14900 11600 8060 7310 5970	371 255 190 416 521	5270 3900 3040 9400 14500
16 17 18 19 20	664 609 528 465 334	25600 24700 20500 16600 10800	198 450 430	6890 5670 14300 15900 9620		14800 13600 12500 14800 35000	167 154 145 144 154	6540 5990 5250 4590 4410	182 177 180 158 153	5210 4760 4520 3890 3570	260 169 142 151 180	7720 4790 3720 3730 4160
21 22 23 24 25	199 185 180 176 173	6020 5190 4650 4140 3730	180 190 225	7680 7000 6870 7530 5960	208	13800 13300 14300 13400 11700	158 592 761 568 361	4190 16900 25300 18700 10700	172 177 155 150 155	3860 3690 3110 2860 2740	158 152 148 145 122	3410 2940 2670 2390 1850
26 27 28 29	145 149 150	2870 2840 2740	201 360	5200 5860 11700 12600	148	11000 10100 12200 13200	228 186 160 158	6220 4700 3770 3560	174 172 137 127	2820 2540 1840 1570	128 131 125 121	1850 1770 1580 1450
30 31	163 271	3020 5710	390	14700 16900	158	10500	205 183	4540 4170	147 120	1710 1330	115	1330

05325000 MINNESOTA RIVER AT MANKATO, MN--Continued WATER QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-67, 1970-79, 1981-87, 1989 to current year.

DATE	TIME	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	MITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
MAY						
15	2000	0.07	17	0.11	0.05	6.9
17	2035	0.06	16	0.06	0.05	7.5
19	1820	0.08	16	0.04	0.08	17
21	2025	0.08	16	0.06	0.05	34
23	1925	0.08	17	0.31	0.04	6.6
25	2025	0.07	<u> 1</u> 7	<0.01	0.04	6.7
28	2030	0.06	17	<0.01	0.07	6.8
30	2100	0.08	18	0.03	0.11	7.2
JUN	2200	0.00				
01	2155	0.10	17	0.04	0.11	7.6
03	1930	0.12	13	0.04	0.15	6.7
05	2030	0.13	13	0.08	0.20	7.5
07	2250	0.16	13	0.06	0.15	7.4
09	2150	0.15	11	0.06	0.14	7.2
11	2003	0.15	12	0.04	0.14	7.3
13	2035	0.12	11	0.04	0.13	7.2
15	2155	0.09	12	0.04	0.14	7.3
17	2130	0.08	12	0.05	0.16	13
20	1727	0.24	12	0.22	0.01	7.0
23	1803	0.08	11	0.04	0.12	16
25	2110	0.15	11	0.17	0.03	18
27	1950	0.06	10	0.03	0.15	>50
29	2025	0.06	8.9	0.03	0.15	6.7
JUL						
01	2210	0.06	8.4	0.04	0.15	7.2
09	1920	0.03	7.1	0.03	0.12	>50
24	2055	0.03	3.1	0.05	0.14	7.2
30	2135	0.03	7.7	0.02	0.12	7.0
AUG					_	
05	2145	0.03	6.9	<0.01	0.10	6.8
13	2120	0.02	9.9	0.03	0.11	>50
21	2140	<0.01	2.1	0.02	0.05	7.6
26	2050	<0.01	1.3	0.02	<0.01	7.6
SEP						
03	2030	0.01	1.3	0.02	<0.01	7.4
10	2030	0.05	2.5	0.06	0.09	8.7
17	2145	0.04	9.2	0.02	0.16	11 _
24	0851	0.02	7.1	0.02	0.09	7.7

05327000 HIGH ISLAND CREEK NEAR HENDERSON, MN

LOCATION.--Lat 44°34'19", long 93°55'18", in NE\hat{NW}\hat{k} sec.26, T.113 N., R.26 W., Sibley County, Hydrologic Unit 07020012, on left bank 20 ft downstream from bridge on County Road 6, 1.6 mi upstream from mouth, and 3.1 mi north of Henderson.

DRAINAGE AREA.--237 mi².

PERIOD OF RECORD.--October 1973 to current year. May 1970 to September 1973, operated as a low-flow station only. REVISED RECORDS.--WDR-MN-80-2: 1974-75, 1977-79.

GAGE.--Water-stage recorder. Datum of gage is 728.56 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft³/s and maximum (*):

Date	Time	Disc (ft	parge 3/s)	Gage heigh (ft)	t		Date	Time	Disch (ft	arge /s)	Gage height (ft)	
Mar. 23 Apr. 20 May 5	1230 1430 2000	6	22 36 10	2.99 3.43 4.90			May 29 May 31 June 1 Sep. 14	0100 1100 2230 1430	53 1,03 58 *1,30	30 36	4.10 6.24 4.50 *7.31	
		DISCHARG.	E, CUBI	C FEET PER		WATER YE Y MEAN V		1990 TO S	SEPTEMBER	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 TOTAL MEAN MAX MIN FT CFSM IN STATIST MEAN MAX MAX MIN STATIST MEAN MAX MAX MIN AC-FM IN STATIST MEAN MAX MAX MIN AC-FM IN STATIST MEAN MAX	2.7 3.2 4.0 4.7 4.0 2.9 2.3 2.2 2.2 2.5 5 2.5 2.5 2.5 2.5 3.7 2.8 2.9 4.2 2.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4	3.4 2.9 3.37 3.77 3.77 5.3 4.75 4.26 4.26 3.4 2.8 3.4 2.8 3.4 2.9 3.3 3.3 2.9 3.3 3.3 2.9 3.3 3.3 2.9 3.3 3.3 4.7 100.1	3.2 2.9 9.7 2.2 2.2 2.2 2.3 3.3 3.3 3.0 1.0 9.9 9.5 5.5 5.5 2.2 2.2 2.2 2.3 3.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.8 1.9 1.9 1.7 1.7 1.7 1.7 1.8 1.9 1.9 2.0 2.2 2.1 2.2 2.1 2.2 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 1.9 1.8 1.7 1.6 1.8 1.9 1.9 1.9 1.9 1.9 2.0 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.1	1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	e4.9 e5.2 e5.4 5.6 20 21 18 16 20 31 33 24 19 18 19 26 83 115 126 157 163 290 246 211 201 221 215 191 175 147 2844.1 91.7 2844.1 191.7 290 4.9 5640 391 491 491 491 491 491 491 491 491 491 4	121 102 89 79 74 59 46 45 42 37 75 194 e250 e250 e250 e250 311 339 355 3297 243 116 112 112 112 113 112 114 611 155 91 65 165 172 87 87 87 87 87 87 87 87 87 87 87 87 87	124 128 147 234 473 e670 e580 e470 e400 e365 e340 e335 e275 e230 201 193 185 165 147 107 107 99 89 177 420 296 497 899 261 670 89 11.27 261 261 261 261 261 261 261 261 261 261	427 471 383 370 385 397 3984 383 3495 165 192 165 101 190 1192 171 1482 140 137 1216 101 1217 1218 1217 1218 1217 1218 1217 1218 1217 1218 1217 1218 1218	93 100 110 110 103 91 769 60 54 53 58 86 103 88 70 60 51 42 32 29 30 31 198 198 198 198 198 198 198 198 198 19	72 86 95 95 89 72 65 55 53 63 49 2032 65.5 95	45 42 440 37 35 361 102 1889 361 4810 1120 1190 1110 1020 1110 1020 1110 1020 1110 1020 112
(WY) MIN (WY) SUMMARY	1986 1.51 1990 STATISTIC	1980 2.11 1990	1983 1.37 1976	1983 .98 1977 1990 CALENDA	1984 1.28 1989	1983 6.27 1 975	1983 6.69 1990 FOR 1991 WAT	1986 3.32 1976	1986 1.58 1976	1986 .80 1976	342 1979 1.16 1976 YEARS 1974 -	1991 1.18 1974
LOWEST A HIGHEST LOWEST I ANNUAL SINSTANT, INSTANT, INSTANT, ANNUAL I ANNUAL I ANNUAL I OPERCI 50 PERCI		N N N N N N N N N N N N N N N N N N N		16596.4 45.5 633 1.1 1.3 892 6.00 .90a 32920 .19 2.61 170 4.7 1.5			1220 1.6 1.7 1300 7.31 1.6b 88690 7.02 357 42 2.1	Sep 15 Jan 26 Jan 26 Sep 14 Sep 14		1760 9.5 61080	23 Apr 28 46 Oct 3 59 Jul 10 Aug 25 20c Jan 4 36 33	1976 1976 1981 1981

a Occurred Oct. 24 and Nov.15.
b Occurred all or part of each day Jan. 25, 26, 29-31, Feb. 1.
c Result of freezeup.

e Estimated.

05327000 HIGH ISLAND CREEK NEAR HENDERSON, MN--Continued WATER QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1969, 1989 to current year.

DATE	TIME	CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAN ARD UNIT	D- AT WA S) (DE	PER- STURE TURE TER GC) I	(MM OF S HG) (YGEN, DIS- OLVED I MG/L) (EMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	DEMANI BIO- CHEM- ICAL, 5 DAY (MG/I (00310	AT 105 DEG. C, SUS- PENDED (MG/L)
SEP 09	1100	102	636	8.3	24	.0	742	7.9	64	4.8	192
DATE	RESI VOL TIL SUS PEND (MG (005	A- GE E, NITR - TOT ED (MG /L) AS	RO- GI IN, NITI ITE DI AL SOI /L (MX N) AS	RIÍE IS- NG LVED : 3/L N)	NITRO- GEN, D2+NO3 TOTAL (MG/L AS N) D0630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	AMMONI DIS- SOLVE (MG/L AS N)	GEN, A MONI ORGA D TOT (MG	AM- GE A + MC NIC OR AL D /L (IITRO- IN,AM- INIA + GANIC IS. MG/L S N) 10623)
SEP 09	5	9 0.	13 0	. 12	2.6	2.6	0.18	0.17	2.	2	1.4
DATE	PHO PHOR TOT (MG AS (006	US DI AL SOL /L (MG P) AS	US PHORE S- ORTH VED TO: (MX P) AS	OS-PIRUS (HO I FAL SO FAL (I P) A	PHOS- HORUS DRTHO, DIS- DLVED MG/L S P) 00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIO SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDE (MG/L	PLA TO CHRO D FLUO	TO- INK- INK- INMO CEROM FI	LOR-B PHYTO- LANK- TON ROMO JUOROM UG/L)
SEP 09	0.	49 0.	31 0	. 29	0.26	12	5.0	581	24	.0 <	0.10

05330000 MINNESOTA RIVER NEAR JORDAN, MN

LOCATION.--Lat 44°41'35", long 93°38'30", in NW\sW\sec.7, T.114 N., R.23 W., Carver County, Hydrologic Unit 07020012, on pier at center downstream side of bridge, 1.5 mi northwest of Jordan, and at mile 39.4 upstream from Mississippi River.

DRAINAGE AREA.--16,200 \min^2 , approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1934 to current year. Prior to Oct. 1, 1966, published as "near Carver, Minn".

REVISED RECORDS.--WSP 955: Drainage area. WSP 1508: 1935. WDR MN-87-2: 1976 (cal. yr. summary).

GAGE.--Water-stage recorder. Datum of gage is 690.00 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1966, water-stage recorder 2.8 mi downstream with auxiliary nonrecording gage at present site and present datum.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

REMARKS. -- Records good except for those for estimated daily discharges, which are fair.

		DIDOME	, 001		DAI	LY MEAN	VALUES	Jan. 1000 1	0 0211212	D.1. 1001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	763	788	605	e425	e390	e530	8910	8540	15100	22400	8440	4490
2	730	792	555	e415	e395	e540		9240	15400	22100	8350	4230
3	743	778	512	e405	e400	e550		9590	15500	22000	8150	4030
4	733	771	512 513 464	e395	e405	e560	7880	9990	15300	21500	7830	3770
5	722	789	464	e390	e410	e570		11100	15500 17100	20500	7510	3400
6 7	731 719	803 809	572 672	e385 e380	e420 e430	e600 e650		13000 14400	20900	19000 17800	7310 7210	3120 2890
8	718	779	672	e380	e440	e690		15900	25500	16700	8080	2870
9	735	779 785	667	e380	e450	e750		18600	29500	15600	10200	2890
10	727			e380	e465	e800		20800	31700	14400	12100	3200
11	723	792	603	e385	e475	e850		21900	33000	13000	13400	4710
12	738	791	634 603 599 588 582	e390	e490	e900		22100	33000	12000	14300	5920
13	734	761	588	e400	e500	e980		21400	32000	11900	15000	6610
14	720	737	582	e405	e510	e1070		20200	30500	12600	15300	8550
15	703	718	481	e400	e510	e1160		18500	29100	13200	15100	11900
16	702	709	e540	e405	e470	e1300		16500	27800	13600	14100	13600
17	716	695	e570	e405	e455	e1440		15000	26500	13800	12600	14300
18	701	675	e560	e400	e485	e1600		13900	25000	13900	11300	14500
19	671	633	e550	e400	e495	1940		13100	23400	13900	10200	13900
20	751	611	e440	e390	e500	2330		13000	22500	13300	9580	12700
21 22	797 797	627 627	e325	e395 e380	e490 e495	2780		13300 13700	22000 21900	12000 10600	9100 8670	11400 10300
22 23	797 799	636	e280	e380	e493	3280		14000	22000	10100	8150	9260
24	819	634	e330	63/7	e520 e530	4960 67 8 0		14100	22200	10900	7720	8570
25	945	635	e280 e330 e370 e410	e380 e375 e380 e390 e385 e385 e380	e515	7490	10100	13900	22700	11600	7340	8070
26	875	612	e460	e385	e515	7840		13500	23700	11500	6860	7570
27	824	608	e490	e385	e515	8050	8550	13000	24600	10600	6360	7120
28	784	607	e480	e380	e520	8130		12500	24700	9840	5820	6730
29	818	577	e465	e380		8490		13100	23900	9450	5370	6340
30	815	575	e455	e385		8900		13900	22900	8900	5060	6000
31	789		e440	e385		9060		14600		8450	4730	
TOTAL	23542	21142	15884	12135	13195	95570	273710	456360	714900	437140	291240	222940
MEAN	759	705 809 575	512	391	471	3083		14720	23830	14100	9395	7431
MAX	945	809	672	425	530	9060	14800	22100	33000	22400	15300	14500
MIN	671	575	512 672 280	391 425 375	471 530 390	530	4830	8540	15100	8450	4730	2870
AC-FT	46700	41940	31510	24070	26170	189600	542900	905200	1418000	867100		442200
CFSM	.05	.04	.03	.02	.03	.19	.56	.91	1.47	. 87	.58	.46
IN.	.05	.05 MONTHLY MEAN	.04	.03	.03	. 22	. 63	1.05	1.64	1.00	.67	. 51
STATIST	CICS OF N	MONTHLY MEAN	ATAC N	FOR WATER	YEARS 19	935 - 199	1, BY WAT	ER YEAR (V	₹Y)			
MEAN	1882	1752	1227	747 3118	840	4632	11040	7026	6627	4784	2616	1970
MAX	16030	7643	5216	3118	3992	21170	48210	23030	23830	15250	13910	11020
(WY)	1969	1969	1983	1983	1983	1983	1969	1986	1991	1984	1979	1979
MIN	167	178	1227 5216 1983 158 1977	111	130	322	926	923 1959	633 1976	279 1936	178	183 1976
(WY)	1935				1940	1940				1930	1936	1970
SUMMARY	STATIST	rics	FOR	R 1990 CAL	ENDAR YEA	AR	FOR 1991	WATER YEA	NR.	WATER Y	YEARS 193	5 - 1991
WHIT	TOTAL			943090			23///30					
ANNUAL				2591			7062			3767a		
	LAUNNAL									10670		1986
LOWEST	ANNUAL N	ÆAN.				_				687		1940
HIGHEST	DAILY	1EAN		16800	Aug	3	33000	Jun 1 Dec 2	11	112000	Apr	11 1965
LUWEST	DAILY ME	MEAN EAN AY MINIMUM PEAK FLOW PEAK STAGE		1/5	Jan Jan	1	33000 280 374 33300 25	Dec 2	20	3767a 10670 687 112000 85 89 117000 35.1 79 2729000	Jan	21 1940
ANNUAL	DEVENTUR TANDOUGT	TI MINIMUM		17000	Jan	2	3/4	Jun 1	50 I 1	117000	Jan	20 1940 11 1065
TNGAVNA	LVARCOS ;	TEAR FLUW		1,000	Aug	2	22300	.63 Jun 1	11	11/000	npr	12 1065
TNOTANI	TANEOUS I	OM LIUM		20.4	23 Aug	-	23	.55 5411 1		79.	Nov	17 1955
ANNITAT	RINOER	AC-FT)		1876000			5113000			2729000	1.04	1, 1000
ANNIIAT	RUNOFF	(CFSM)			16		211000	. 44		.:	23	
ANNUAT.	RUNOFF	(INCHES)		2.	17			. 92		3	16	
10 PERG	CENT EXC	EDS		6320			18500	_		9790		
50 PERG	CENT EXC			915			4490			1480		
90 PERG	CENT EXC	EEDS		278			405			287		

a Median of annual mean discharges is $3,230 \text{ ft}^3/\text{s}$.

e Estimated.

05330000 MINNESOTA RIVER NEAR JORDAN, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1952, 1963-69, 1972 to current year.

REMARKS. -- Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	INST. CUBIC CONTROL OF FEET IN PER ASSECOND (U	SPE- C: CIFIC (CON- DI DUCT- AI ANCE I JS/CM) (US	NCE (S' LAB (S'/CM) UI	PH TAND- (S ARD NITS) U	TAND- ARD NITS) (ATURE NATER DEG C) (MP TUR- BID- ITY NTU)	(MM I OF SC HG) (N	F(GEN, 0) IS- UR DLVED (CO 4G/L) 100	ECAĽ, .7 1 M-MF (DLS./ D ML) 1	STREP- TOCOCCI FECAL, KF AGAI (COLS. PER 100 ML) (31673)
NOV 27	1120	608	931	968	3.4	8.0	3.5	6.5	732 14	6	170	88
FEB 25	1420	515 1	1070 1:	130	7.8	8.0	0.0	3.6	752 10	0.7	K2	K8
MAY 15	1145 1	17900	810	339	8.2	8.2	20.0 2	2	738 7	7.5	58	91
AUG 13	1300 1	15100	741	749	3.2	8.2	22.5 3	7	749 7	7.4	510	570
DATE NOV 27 FEB 25 MAY 15 AUG 13	CALCIUM DIS- SOLVEI (MG/L AS CA) (00915) 97 120 100 94	DIS- SOLVEI (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 5.7 6.5 3.8 4.8	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	LAB (MG/L AS CACO3)		HCO3	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 180 200 130	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940) 58 66 36 23	FLUO- RIDE DIS- SOLVI (MG/II) AS F) (00950 0.3 0.4	ED L
DATE	SILICA, DIS- SOLVEI (MG/L AS SIO2) (00955)	AT 180 DEG. C DIS- SOLVED (MG/L)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITROGEN, AMMONIA DIS- SOLVEI (MG/L AS N) (00608)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO DIS- SOLVED (MG/L AS P) (00671	S O, O
NOV 27 FEB	5.7	623	0.02	0.9	0.04	0.04	0.8	0.12	<0.01	0.02	<0.01	L
25 MAY	19	735	0.03	2.2	0.64	0.64	1.5	0.20	0.12	0.14	0.12	2
15	16	563	0.08	17.0	0.03	0.03	1.8	0.10	0.07	0.06	0.05	5
13	25	497	0.05	9.6	0.03	<0.01	1.6	0.36	0.27	0.20	0.18	š

MINNESOTA RIVER BASIN 05330000 MINNESOTA RIVER NEAR JORDAN, MN--Continued

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. Z FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
NOV 27			150	•	75	<0.5	-1 0	<1	<3	2	240
FEB			150	1	/5	~0.5	<1.0	~1	-3	2	240
25 MAY	95	21	<10	1	81	<0.5	3.0	<1	<3	2	10
15	116		<10	2	87	<0.5	<1.0	<1	<3	2	5
AUG 13	340	55	<10	3	83	<0.5	<1.0	<1	<3	6	5
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
NOV 27	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
NOV 27 FEB 25	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
NOV 27 FEB	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)

MISSISSIPPI RIVER MAIN STEM

05331000 MISSISSIPPI RIVER AT ST. PAUL, MN

LOCATION.--Lat 44°56′40", long 93°05′20", in SE\NE\s sec.6, T.28 N., R.22 W., Ramsey County, Hydrologic Unit 07010206, on left bank in St. Paul, 300 ft upstream from Robert Street Bridge, 6 mi downstream from Minnesota River, and at mile 839.3 upstream from Ohio River.

DRAINAGE AREA. -- 36,800 mi², approximately.

WTR YR 1991 MEAN: 16.259

CFSM# 0.44

IN# 6.00

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --Water year 1867-69, 1872-92 (annual maximums), March 1892 to current year (prior to 1901, fragmentary during some winters). Records prior to March 1892, published in the 19th Annual Report, Part 4, have been found to be unreliable and should not be used. Monthly discharge only for some periods, published in WSP 1308. Gage-height records (winter records incomplete) collected at same site since 1866 are contained in reports of U.S. Weather Bureau, War Department and Mississippi River Commission.

REVISED RECORDS.--WSP 285: 1892-96. WSP 715: Drainage area. WSP 875: 1938. WSP 895: 1939. WSP 1308: 1867(M). WSP 1508: 1897, 1898(M), 1903(M), 1917-18(M), 1928(M), 1929. WRD MN-74: 1973.

GAGE.--Water-stage recorder. Datum of gage is 683.62 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 18, 1925, nonrecording gage at several sites within 300 ft of present site at present datum. Mar. 18, 1925, to Mar. 10, 1933, water-stage recorder and Mar. 11, 1933, to Sept. 14, 1939, nonrecording gage, at present site and datum. Since September 1938, auxiliary water-stage recorder 5.6 mi downstream.

REMARKS.--Records good. Slight regulation except during extreme floods by reservoirs on headwaters and by power plants. Beginning July 20, 1938, sewage from Minneapolis and St. Paul, which formerly entered above station, was diverted to a sewage-disposal plant, thence to river below station. Figures of daily discharge do not include this diversion.

COOPERATION. -- Records of Mississippi River at Twin City lock and dam computed and furnished by Ford Motor Co. Diversion through sewage disposal plant furnished by Metropolitan Waste Control Commission.

		DISCHA	RGE, CUBIC	FEET PER	SECOND, DAIL	WATER Y MEAN	YEAR OCTOBE VALUES	ER 1990 T	O SEPTEMBER	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAF	R APR	MAY	JUN	JUL	AUG	SEP
1	4170	7980	3350	3540	3130	2880	25400	22300	31700	34400	15900	9260
2	3600	7570	3560	3480	3490	3100	24600	24400	33700	36300	16100	8280
1 2 3 4	3500	7320	3800	3380	3350	3120	23600	25200	34100	36900	17100	8200
4	3960	7500	3570	3470	4180	3120	22300	26800	35400	38000	18100	8140
5	4850	7270	3930	3340	3240	3060	20900	28000	35300	38200	17300	8350
6 7	4490	6770	3770	3590	3520	3130	20300	31400	35700	37400	16700	8050
7	4390	6530	3790	3470	2860	3110	19100	35300	37000	35400	16100	7350
8	4880	6990	4210	3380	2830	3090	17700	39700	41000	34100	15800	7440
9	4460	6690	4240	3360	2820	3320	16800	42400	45000	32500	16900	9110
10	5210	6610	4310	3360	2910	3290	16000	46600	48800	31000	18700	12800
11	5240	6520	3790	3310	2900	3280	15600	49800	51100	29100	20200	13300
12	5360	5970	4190	3390	2950 3360 3200	3140	15100	51700	50500	26800	21100	15400
13	4940	6090	4190 3870	3390	3360	3540	14900	52000	49500	26700	22400	19000
14	5030	5590	3920	3390	3200	3490	15900	50500	47700	25600	22700	21300
15	4840	5660	3170	3430	2890	3640	18300	47900	45100	26200	22300	24200
16	4690	5940	3780	3340	3160	3770	23300	44100	42800	26100	22300	29100
17	4650	5620	3810	3420	4810	3730	27300	40700	41000	26200	20900	31500
18	4810	5910	3810	3320	4670	4270	30100	37900	38900	26100	19300	32200
19	5370	5500	3350	3180	3820	4460	31800	35000	36200	25700	17800	32400
19 20	5280	5750	3260	3520	3890	4890	33600	32600	34500	25900	16400	31500
21	5820	5320	2950	2970	4090	5590	34800	30800	33900	24500	15500	29300
22	5870	5480	2260	3160	3480	7290	35200	30200	34200	23200	14600	27000
23	6730	5160	2130	3340	3110	7290 9350	34600	29500	33600	21300	14300	25700
24	7790	5260	3570	3170	3120	12600	32600	28800	33600	20200	14100	24300
24 25	7890	5410	3730	3130	3390	17300	29800	28400	33800	20500	13800	22400
26	8190	5040	3730	3260	3540	19000	27000	27600	34200	20400	13100	21500
27	8280	5090	3600	3470	3540 3240	21000	24500	27200	35500	20100	12500	20900
28	7950	4310	3360	3480	3030	22500	23100	26900	36300	18900	12000	18700
28 29 30	7970	4540	3880	3480 3120		23600		27000	36200	18600	11200	17800
30	7800	3580	3530	2960		24600	21500	29100	35700	17800	10500	17100
31	7820		3510	2940		25000		30600	-+-	16700	9840	
TOTAL	175830	178970	111730	103060	94980	257260	718200	1080400	1162000	840800	515540	561580
MEAN	5672	5966	3604	3325	3392	8299		34850	38730	27120	16630	18720
MAX	8280	7980	4310	3590	4810	25000	35200	52000	51100	38200	22700	32400
MIN	3500	3580	2130	2940	2820	2880		22300	31700	16700	9840	32400 7350
AC-FT	348800	355000	221600	204400	188400	510300	1425000	2143000	2305000 1	668000	1023000	1114000
CFSM	.15	.16	.10	.09	.09	.23		95	1.05	.74	.45	.51
IN.	. 18	18	.11	.10	10	.26	.73	.95 1.09	1.17	.85	. 52	57
Ŧ.	341	321	307	308	.10 319	344	363	457	408	397	392	.51 .57 453
MEAN!	341 6013	321 6287 0.17	3911	3633	3711	8643	24303	457 35307	39138	27517	17022	19173
MEAN : CFSM :	0.16	0.17	0.11	3633 0.10	0 10	0.23	0.66	0.96	1.06	0.75	0.46	0.52
IN‡	0.19	0.19	0.12	0.11	0 11	8643 0.23 0.27	0.74	1.11	1.19	0.86	0.53	0.58
CAL YR	1990 MF	EAN # 9.568	CFSM:	0 26	0.11 IN‡ 3.53	0.2/	0.,7	****	1.10	0.00	0.50	0.50
J 111		222			7							

MISSISSIPPI RIVER MAIN STEM

05331000 MISSISSIPPI RIVER AT ST. PAUL, MN--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1892 - 1991, BY WATER YEAR (WY)

MEAN 8215 7351 MAX 38210 27660 (WY) 1987 1972 MIN 1289 1348 (WY) 1937 1937	5234 4299 16080 11500 1983 1983 1277 1097 1935 1935	4291 14700 1966 1300 1895	10470 43240 1983 1757 1940	24580 91610 1969 3421 1895	19880 66470 1986 3085 1934	17490 56530 1908 1980 1934	13260 43290 1905 1272 1934	8259 33380 1953 864 1934	7808 34380 1986 1143 1934
SUMMARY STATISTICS	FOR 1990 CALEN	DAR YEAR	;	FOR 1991 V	NATER YEAR		WATER YEA	RS 1892	- 1991
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	3362830 9213a			5800350 15890a			10960ab 29580 1935		1986 1934
HIGHEST DAILY MEAN LOWEST DAILY MEAN	35500 2130	Jun 26 Dec 23		52000 2130	May 13 Dec 23		171000 632	Apr 1	l6 1965 26 1934
ANNUAL SEVEN-DAY MINIMUM	2490	Feb 28		2950	Feb 7		741	Aug 2	26 1934
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE							171000 26.01		l6 1965 l6 1965
ANNUAL RUNOFF (AC-FT)	6670000	_		11500000			7937000	•	
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)	.25 3.40			5.8	43		.30 4.05		
10 PERCENT EXCEEDS	20100	,		35300	30		25800		
50 PERCENT EXCEEDS	6690			9350			6690		
90 PERCENT EXCEEDS	2630			3250			2610		

Diversion equivalent in cubic feet per second through sewage disposal plant. Adjusted for diversion. Unadjusted. Adjusted mean is 11,188 $\rm ft^3/s$. Unadjusted median is 9,956 $\rm ft^3/s$.

MISSISSIPPI RIVER BASIN

05331000 MISSISSIPPI RIVER AT ST. PAUL, MN--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956 to December 1990 (discontinued).

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1956 to December 1990 (discontinued).

INSTRUMENTATION. -- Temperature recorder since October 1956.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum, 31.0°C, July 24-28, 1964, July 31, 1975, July 19, 21, 1977, Aug. 17, 1988;
minimum, 0.0°C many days during winter periods.

EXTREMES FOR CURRENT PERIOD--October to December 1990:
WATER TEMPERATURES: Maximum during period, 15.0°C, Oct. 15; minimum, 0.0°C, Dec. 5.

WATED	TEMPERATURE.	DECEPTES	CELSIUS	WATED	VEAD	OCTORER	1990	TΩ	SEPTEMBER	1001	

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	1		NOVEMBER		I	ECEMBER			JANUARY	•
1 2				10.0 10.5	9.0 10.0	9.5 10.0	2.5 2.0	1.5 1.5	2.0 1.5			
3 4 5				10.5 9.5 8.5	9.5 8.5 7.5	10.0 9.0 8.0	2.5 1.5 1.5	1.5 .5 .0	1.5 1.0 1.0			
6 7 8 9 10				8.0 7.5 6.5 5.5 5.0	7.0 6.5 5.5 5.0 4.5	7.5 7.0 6.0 5.5 4.5	1.5 2.0 2.5 3.0 3.5	.5 .5 1.0 2.0 2.5	1.0 1.5 1.5 2.5 3.0			
11 12 13 14 15	14.5 14.5 15.0	14.0 14.0 14.0	14.0 14.5 14.5	5.0 6.0 6.5 7.0 7.0	4.5 5.0 5.5 5.5 5.5	5.0 5.5 6.0 6.0	4.0 4.5 3.5 3.5 2.0	3.0 3.0 2.5 2.0	3.5 4.0 3.0 2.5 1.5			
16 17 18 19 20	14.5 14.5 13.0 12.5 11.5	14.0 13.0 12.0 11.0 10.0	14.5 14.0 12.5 11.5 10.5	7.5 7.5 7.0 6.5 7.0	6.5 6.5 6.0 6.0	7.0 7.0 6.5 6.5	2.0 2.5 3.0 2.5	1.5 1.0 1.5 1.5	1.5 2.0 2.0 1.5			
21 22 23 24 25	10.0 10.0 10.5 10.5	9.5 9.5 9.5 10.0 9.5	10.0 9.5 10.0 10.0	8.5 8.0 8.0 6.0 4.5	7.0 7.0 6.0 5.0 3.0	7.5 7.5 7.5 5.5 4.0						
26 27 28 29 30 31	10.0 10.0 9.5 9.5 9.5 10.0	9.5 9.0 9.0 8.5 8.5 9.5	9.5 9.5 9.5 9.0 9.0	4.5 4.5 4.0 3.0 3.5	3.0 3.5 2.5 2.0 1.5	4.0 4.0 3.5 2.5 2.5						
MONTH				10.5	1.5	6.3						

MISSISSIPPI RIVER MAIN STEM

05331570 MISSISSIPPI RIVER AT NININGER, MN (National stream-quality accounting network station)

WATER-OUALITY RECORDS

LOCATION.--Lat 44°46'22", long 92°54'07", NE\NE\s sec.18, T.115 N., R.17 W., Dakota County, Hydrologic Unit 07010206, on right bank at the end of Jason Avenue, and at mile 817.8 upstream from Ohio River.

DRAINAGE AREA. --37,000 mi^2 (95,000 km^2), approximately.

PERIOD OF RECORD. -- January 1977 to current year.

REMARKS.--Water-discharge computed on the basis of discharge for Mississippi River at St. Paul (station 05331000) adjusted for inflow and travel time. Letter K indicates non-ideal colony count. Letter E indicates estimated value.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	CIFIC CON- 1 DUCT- A ANCE (US/CM) (1	ANCE (S' LAB JS/CM) UI	PH I TAND- (SI ARD A NITS) UI	TAND- AT ARD WA NITS) (DE	TURE B TER I IG C) (N	ME PR UR- S ID- (TY TU) H	MM D OF SO G) (M	FC FE GEN, 0. IS- UM LVED (CC G/L) 100	LI- STREP- RM, TOCOCCI CAL, FECAL, 7 KF AGAR (-MF (COLS. LS./ FER ML) 100 ML) 625) (31673)
NOV 28	1215	5610	449	508	3.5	3.2 2	2,5 15	73	8 15	.2 E3	80 100
FEB 27	0830	3980	683					.0 74			51 K9
APR 17	1245	24500	545				2				20 620
AUG	1215		607				-	- '	_		
01	1215	17700	607	620	7.8	3.1 24	.0 25	74	5 /	.2 2	20 180
NOV 28 FEB 27 APR 17	CALC: DIS- SOLIV (MG AS ((009)	DI: VED SOL' /L (MG CA) AS 1.5) (009)	UM, SODIUM S- DIS- VED SOLVED /L (MG/L MG) AS NA 25) (00930 0 23 3 48	, SIUM, DIS- SOLVED (MG/L) AS K)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 174 218	ALKA- LINITY LAB (MG/L AS CACO3) (90410) 188 219	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 202 266 203	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 40 47 70	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950) 0.3 0.2
01	73	3 2	7 16	4.0		203			90	22	0.3
DATE	SILIC DIS- SOLV (MG, AS SIO2 (0095	- AT 1 VED DEG /L DI SOL 2) (MG	DUE GEN, 80 NITRITI . C DIS- S- SOLVEI VED (MG/L /L) AS N)	GEN, E NO2+NO3 DIS- D SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS-PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
NOV 28	4.	.8 2	97 0.02	1.4	0.10	0,10	1.2	0.50	0.13	0.14	0.13
FEB 27	12		08 0.06	2.0	0.65	0.65	1.5	0.32	0.25	0.23	0.23
APR 17	11		16 0.03	6.6	0.10	0.09	0.9	0.24	0.09	0.11	0.07
AUG 01	18	3:	90 0.06	3.7	0.07	0.07	1.4	0.30	0.16	0.16	0.14

MISSISSIPPI RIVER MAIN STEM

05331570 MISSISSIPPI RIVER AT NININGER, MN--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
NOV			10			-0.5	-1 0		<3	2	24
28 FEB			10	<1	44	<0.5	<1.0	<1	-3	2	24
27 APR	5	100	30	<1	62	<0.5	2.0	<1	<3	3	16
17	76		<10	1	62	<0.5	<1.0	<1	<3	1	46
AUG 01	76	99	<10	3	68	<0.5	<1.0	<2	<3	4	18
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
NOV	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
NOV 28 FEB	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
NOV 28 FEB 27	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
NOV 28 FEB 27	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)

ST. CROIX RIVER BASIN

05336700 KETTLE RIVER BELOW SANDSTONE, MN

LOCATION.--Lat 46°06'20", long 92°51'50", in NWkSWk sec.22, T.42 N., R.20 W., Pine County, Hydrologic Unit 07030003, on Sandstone Federal Correctional Institution property, on left bank about 900 ft downstream from abandoned powerplant dam, 1.8 mi south of Sandstone.

DRAINAGE AREA.--863 mi².

PERIOD OF RECORD . -- October 1967 to current year.

PERIOD OF RECORD. --October 1967 to current year.

GAGE. --Water-stage recorder and crest-stage gage. Datum of gage is 931.50 ft above National Geodetic Vertical
Datum of 1929. (Minnesota Department of Transportation bench mark).

REMARKS. --Records good except those for estimated daily discharge, which are fair.

AVERAGE DISCHARGE. --24 years, 716 ft³/s, 11.27 in/yr.

EXTREMES FOR FERIOD OF RECORD. --Maximum discharge, 17,200 ft³/s, July 23, 1972, gage height, 15.38 ft; minimum,
25 ft³/s, Nov. 11, 12, 1977, gage height, 3.37 ft, result of freezeup.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood in April 1965 reached a stage of 12.96 ft, from flood marks, discharge,
13,400 ft³/s.

EXTREMES FOR CURRENT YEAR. --Peak discharges greater than base discharge of 3,600 ft³/s and maximum (*)

Discharge Gage height

Date Time (ft³/s) (ft)

Date Time (ft³/s) (ft)

Occurred Mar. 6, 7, 8. Occurred Mar. 6, 7, 9, 10, 11. Occurred Nov. 11, 12, 1977, result of freeze up.

Estimated.

Date

ST. CROIX RIVER BASIN

05337400 KNIFE RIVER NEAR MORA. MN

LOCATION.--Lat 45°55'12", long 93°18'26", in SWkSWkS sec.26, T.40 N., R.24 W., Kanabec County, Hydrologic Unit 07030004, on left bank 400 ft upstream from bridge on County Highway 77, 1.1 mi upstream from mouth and 2.5 mi north of Mora.

DRAINAGE AREA.--102 mi².

Time

Discharge Gage height (ft³/s) (ft)

DRAINAGE AREA. --102 mi².

PERIOD OF RECORD. --Occasional low-flow measurements, water years 1969-74; July 1974 to current year.

GAGE. --Water-stage recorder. Datum of gage is 991.20 ft above National Geodetic Vertical Datum of 1929.

(Kanabec County bench mark).

REMARKS. --Records good except those for periods of estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of July 26, 1972, reached a stage of 14.0 ft, from information by local resident (discharge not determined). Result of dam failure and backwater from collapsed bridge.

EXTREMES FOR CURRENT YEAR. --Peak discharges greater than base discharge of 500 ft³/s and maximum (*):

Date

Time

Discharge Gage height (ft³/s) (ft)

Apr. 15 May 6	2100 2200		658 ,020	4.54 *5.20			July	7 2	1100	606		4.43
		DISCHAR	GE, CUBI	C FEET PER		WATER YEA Y MEAN VAL		1990 TO 1	September	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13	4.7 5.1 23 32 35 28 24 22 20 18 17 15	38 40 35 31 29 26 24 31 27 20 19 19	e12 e11 e10 e10 e10 e10 e10 e10 e9.8 9.8 9.6 9.4 e9.2	e5.54 e5.4 e5.3 e5.3 e5.2 e5.2 e5.2 e5.2	e5.0 e5.4 e6.0 e6.6 e6.9 e8.0 e7.7 e7.3 e7.0 e6.8	e6.5 e6.5 e6.4 e6.4 e6.4 e6.6 e6.7 e7.4	169 143 128 119 117 118 128 148 141 131 127 131	250 263 244 259 363 820 948 700 515 391 315 264 221	293 263 232 180 146 120 100 85 78 97 82 75 68	268 585 530 420 311 237 178 142 114 97 85 97 118	23 31 32 28 24 21 19 15 13 13 12	5.1 3.9 22 17 16 13 11 35 53 56 50 45
14 15 16 17 18 19 20 21 223 24 25 26 27 28 29 30 31	16 14 14 43 51 45 77 72 76 90 86 68 62 61 52 47 44 41	14	e9.0 e9.0 e8.8 e8.6 e8.4 e8.1 e7.7	e5.2 e5.2 e5.2 e5.2 e5.2 e5.2 e5.2 e5.2	e6.6 e6.6	e7.5 e8.7 e10 e13 19 28 41 168 247 298 286 325 401 435 397 317 250 202	392 602 607	196 166 150 145 116 97 88 81 77 80 131 162 173 183 195 237 333 329	74 78 80 68 87 92 126 148 136 122 108 94 73 71 69 83	110 94 77 68 61 65 63 60 54 45 38 31 27 29 34 29 26	10 9.2 10 10 86.7 5.5 5.5 5.5 7.0 7 19 6.2 9.2 10 9.2 10 10 10 10 10 10 10 10 10 10 10 10 10	30 27 21 22 20 19 18 16 14 16 14 16 15 12
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1217.8 39.3 90 4.7 2420 .39	595 19.8 40 12 1180 .19 .22	259.6 8.37 12 5.5 515 .08	5.21 5.5 5.0 320 .05 .06	184.1 6.57 8.0 5.0 365 .06	3539.1 114 435 6.3 7020 1.12 1.29	6523 217 607 108 12940 2.13 2.38	8492 274 948 77 16840 2.69 3.10	3407 114 293 68 6760 1.11 1.24	4118 133 585 25 8170 1.30 1.50	407.8 13.2 32 5.2 809 .13 .15	660.0 22.0 56 3.9 1310 .22 .24
MEAN MAX (WY) MIN (WY)	58.0 242 1985 1.84 1977 Y STATISTIC TOTAL	41.1 206 1978	25.3 109 1978	COR WATER YF 12.3 28.8 1984 1.14 1977 1990 CALENI 15027.0 41.2	13.5 48.9 1984	63.7 238 1983 14.3 1975	223 472 1986 30.5 1977 R 1991 WAI 29564.9 81.0	111 338 1986 12.5 1980	65.3 233 1984 3.06 1988	60.7 171 1975 .98 1988 WATER YE	25.5 120 1986 1.86 1976 ARS 1974	43.6 257 1986 2.15 1987 - 1991
HIGHES: LOWEST HIGHES: LOWEST ANNUAL INSTAN: INSTAN: INSTAN: ANNUAL ANNUAL 10 PERG 50 PERG 50 PERG	T ANNUAL ME ANNUAL MEA I DAILY MEAN DAILY MEAN SEVEN-DAY IANEOUS PEA TANEOUS LOW RUNOFF (CF RUNOFF (IN CENT EXCEED CENT EXCEED CENT EXCEED	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN		516 1.0 1.0 569 4.42 29810 5.48 112 16 1.2	Jun 4 Jan 1 Feb 15 Jun 4 Jun 4		948 3.9 5.0 1020 3.6 58640 .79 10.78 245 21	May 7 Sep 2 Jan 27 May 6 May 6 Sep 2,3	3	135 16.8 1610 .76 .86 1840 6.69 .74 45040 .61 8.28 146 21 3.6	Jul Jul May Nov	1986 1988 1 1986 7 1988 23 1988 10 1979 24 1977

a Occurred July 6, 7, 28, 29, 1988. e Estimated.

ST. CROIX RIVER BASIN

05340500 ST. CROIX RIVER AT ST. CROIX FALLS, WI

LOCATION.--Lat 45°24'25", long 92°38'49", in SWkNWk sec.30, T.34 N., R.18 W., Polk County, Hydrologic Unit 07030005, St. Croix National Scenic Riverway, on left bank, 1,500 ft downstream from powerplant of Northern States Power Co., in St. Croix Falls, and at mile 52.2.

DRAINAGE AREA, --6,240 mi².

PERIOD OF RECORD.--January 1902 to current year. Prior to January 1910, monthly discharge only, published in WSP 1308. Prior to October 1939, published as "near St. Croix Falls."

REVISED RECORDS. -- WSP 1115: 1929. WDR WI-82-1: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 689.94 ft above National Geodetic Vertical Datum of 1929. Prior to July 1905, gage heights and discharge measurements were used by Loweth and Wolff, consulting engineers of St. Paul, Minn., to determine the flow. July 1905 to February 1940, records were computed from power generation at the St. Croix Falls Powerplant. February 1940 to Sept. 30, 1979, water-stage recorder at site 300 ft downstream at same datum.

REMARKS.--Estimated daily discharges: June 13-24, based on powerplant data provided by Northern States Power Company. Records good. Diurnal fluctuation caused by St. Croix Falls Powerplant 1,500 ft upstream. Data-collection platform at station.

AVERAGE DISCHARGE. -- 89 years, 4,312 ft3/s, 9.38 in/yr,

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 54,900 ft³/s, May 8, 1950, gage height, 25.19 ft; minimum daily, 75 ft³/s, July 17, 1910.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 25,300 ft³/s, May 9, gage height, 11.97 ft; minimum daily, 1,420 ft³/s, Dec. 4.

RATING TABLE (gage height, in feet, and discharge, in cubic feet per second).

2.5	1.400	6.0	10,700
3.0	2,350	8.0	15,700
4.0	4,950	12.0	25,400

DISCHARGE,	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1990	TO	SEPTEMBER	1991	
				DAIL	Y MEAN	VALUE	ES					

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2590	4520	2640	1800	2120	1820	11900	7950	12800	7030	6220	2040
2	2310	4090	2060	2380	1610	2040	10400	9920	14000	9130	5950	1710
2 3 4	2830	4130	2070	1820	1670	2000	9210	10700	16200	10500	5980	3460
4	2710	3950	1420	2010	1930	. 2030	8690	10600	15700	10900	5480	2880
5	3560	3640	1820	1810	1810	1870	8400	11000	12600	10600	4610	2480
6 7	4000	4050	2340	1790	1570	2000	8430	15800	11000	10600	4130	2700
	3780	3190	2710	1870	2180	1880	8460	19900	9680	10100	4390	2570
8	3560	3310	2730	1660	1790	2080	8650	24000	8380	9220	3660	4180
9	3130	2960	2760	1970	2130	1720	9090	24800	7480	8270	3600	9100
10	3460	3300	2230	1790	1870	1780	9240	23400	7040	7620	3340	11700
11	2940	3130	2840	2080	2090	2220	9230	20900	6740	7070	3200	13600
12	3200	2790	2450	1850	2070	1910	9110	18000	6360	6790	3010	13600
13	2500	2820	2570	1630	1910	2210	9220	15600	5450	7710	3160	11500
14	3010	3390	2160	1990	1650	2080	10100	13700	5980	8220	2710	10500
15	2810	3080	2340	1860	2050	2200	11000	11600	5860	7800	2710	9280
16	2840	2900	1920	1960	2010	2580	11700	10400	7050	7370	2740	7570
17	3480	2830	2250	2250	1800	2290	12500	9210	7050	6710	2720	7620
18	3550	2900	2240	1910	1880	2330	12400	8780	7090	6410	2360	7650
19	5240	2890	2110	2020	1800	2900	11900	9630	6940	5610	2770	7360
20	7410	2910	1890	2340	1850	3190	11300	7720	6540	5820	2630	7480
21	7460	2890	1940	1770	1810	4230	10500	6530	6470	5620	2870	6870
22	7920	2600	1510	2210	2010	6200	9730	5240	7830	5460	2500	6590
23	8460	2840	1680	2080	1890	7870	8850	5340	10500	5320	2100	6300
24	8240	2 96 0	1540	2050	1940	12100	8260	5780	11500	5000	2310	5580
25	7520	2700	1440	1980	1950	13900	7770	6530	9920	4400	2110	5540
26	7150	2230	2030	1740	1830	14800	7360	7590	8210	3970	2680	4940
27	6550	2820	1810	1710	1850	16200	6820	9250	7300	3780	2410	5090
28	5840	2270	2030	1940	2010	18000	6640	11200	696 0	3800	2270	4560
29	5470	1760	2350	1700		17800	6330	11600	5610	3870	2210	4120
30	4860	1820	2070	1900		15800	6320	11800	6020	5250	2080	3820
31	4710		1820	1950		13600		12600		6010	2040	
TOTAL	143090	91670	65770	59820	53080	183630	279510	377070	260260	215960	100950	192390
MEAN	4616	3056	2122	1930	1896	5924	9317	12160	8675	6966	3256	6413
MAX	8460	4520	2840	2380	2180	18000	12500	24800	16200	10900	6220	13600
MIN	2310	1760	1420	1630	1570	1720	6320	5240	5450	3780	2040	1710
CFSM	.74	.49	.34	.31	.30	. 95	1.49	1.95	1.39	1.12	. 52	1.03
IN.	.85	. 55	.39	.36	.32	1.09	1.67	2.25	1.55	1.29	.60	1.15

CAL YR 1990 TOTAL 1368710 MEAN 3750 MAX 15700 MIN 1200 CFSM .60 IN. 8.16 WTR YR 1991 TOTAL 2023200 MEAN 5543 MAX 24800 MIN 1420 CFSM .89 IN. 12.06

MISSISSIPPI RIVER MAIN STEM

05344500 MISSISSIPPI RIVER AT PRESCOTT, WI

LOCATION.--Lat 44°44'45", long 92°48'00", in sec.9, T.26 N., R.20 W., Pierce County, Hydrologic Unit 07040001, on left bank at Prescott, 200 ft downstream from St. Croix River, 300 ft south of Chicago, Burlington & Quincy Railroad bridge, 800 ft south of bridge on U.S. Highway 10, and at mile 811.4 upstream from Ohio River. DRAINAGE AREA.--44,800 mi², approximately.
PERIOD OF RECORD.--June 1928 to current year.
REVISED RECORDS.--WSP 1508: 1941. WRD MN-74: 1973.
GAGE.--Water-stage recorder. Datum of gage is 649.50 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 2, 1932, nonrecording gage at railroad bridge 300 ft upstream at following datums: June 3, 1928, to Sept. 30, 1929, 19.27 ft higher; Oct. 1, 1929, to Sept. 30, 1930, 17.68 ft higher; Oct. 1, 1930, to Aug. 1, 1932, 19.28 ft higher. Aug. 2, 1932, to Oct. 30, 1938, water-stage recorder at present site at datum 19.28 ft higher; Nov. 1, 1938, to Sept. 7, 1971, water-stage recorder at present site at datum 50.00 ft lower.
REMARKS.--Records good. Some regulation by reservoirs, navigation dams, and powerplants at low and medium stages.
Flood flow not materially affected by artificial storage.
AVERAGE DISCHARGE.--63 years, 17,182 ft3'/s, 5.21 in/yr; median of yearly mean discharges, 16,000 ft3/s, 4.85 in/yr.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 228,000 ft3/s, Apr. 18, 1965, gage height, 43.11 ft; minimum daily, 1,380 ft3/s, July 13, 1940; minimum gage height, 15.08 ft, Aug. 29, 1934, present datum.
EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 74,300 ft3/s, May 12; maximum gage height, 33.27 ft, May 11; minimum daily discharge, 4,320 ft3/s, Dec. 23; minimum gage height, 24.53 ft, Dec. 25, result of freeze up.

freeze up.

Gage height

Discharge

VERMILLION RIVER BASIN

05345000 VERMILLION RIVER NEAR EMPIRE, MN

LOCATION.--Lat 44°40'00", long 93°03'17", in SW\NW\x sec.24, T.114 N., R.19 W., Dakota County, Hydrologic Unit 07040001, on right bank and just downstream from County Road 79, 2 mi west of Empire and 4 mi northeast of Farmington.
DRAINAGE AREA. -- 110 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1942 to June 1945 (no record during July, August, and September 1944), September 1969 to September 1973 (discharge measurements only), October 1973 to current year. Prior to October 1975 published as "near Empire City".

GAGE.--Water-stage recorder. Datum of gage is 851.99 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). April 12, 1942, to June 30, 1944, and October 1, 1944, to July 7, 1945, nonrecording gage at same site and present datum.

REMARKS. -- Records good except those for estimated daily discharges, which are fair. Some regulation at low-flow by sewage plant upstream.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft³/s and maximum (*):

Discharge

Gage height

Da te	Time	(1	ft ³ /s)	(1	tt)		Date	T	ime	(ft ³ /s)	(ft	2)
May 6	2000	•	*2 56	*5.	.49		May 30	1	330	204	5.0	9
		DISCHARG	E, CUBIC	FEET PE	R SECOND, W	VATER MEAN	YEAR OCTOBER VALUES	1990 T	O SEPTEMBER	1991		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 TOTAL	29 29 32 32 31 29 30 30 31 30 31 30 31 32 32 32 32 32 32 31 32 32 31 32 31 32 31 31 31 31 31 31 31 31 31 31 31 31 31	32 31 31 31 32 331 29 29 29 29 29 28 29 29 27 27 27 27 27 27 27 27 27 27 27 27 27	25 25 26 25 26 25 26 25 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	22 21 e21 e21 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	20 20 21 22 22 22 23 23 24 24 24 24 23 23 23 23 22 22 22 22 22 22 22 22 22	22 22 22 21 22 25 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	51 446 45 443 41 41 41 41 41 41 41 41 41 41 41 33 47 66 47 66 66 47 41 41 41 41 41 41 41 41 41 41 41 41 41	64 57 51 67 117 244 196 125 107 78 72 68 70 70 68 64 61 62 62 63 145 17 187 199 1377	130 113 102 88 79 67 63 59 58 55 55 55 48 43 46 44 40 38 34 40 38 34 33 1734	41837653311301324198766554427522332256533893	227 29 26 25 40 311 287 26 26 26 22 22 22 21 21 21 176	19 20 24 21 20 27 47 38 43 62 49 440 38 37 33 35 33 33 34 32 32 32 31
MEAN MAX MIN AC-FT	31.4 35 29 1930	28.1 32 25 1670	23.4 26 22 1440	20.8 22 20 1280	22.5 26 20 1250	42.4 128 21 2600	69 . 36	109 244 51 6700	57.8 130 33 3440	28.8 41 23 1770	25.0 40 19 1540	36.8 74 19 2190
STATIST MEAN MAX (WY) MIN (WY) SUMMARY	44.2 135 1987 14.9 1977 STATISTIC	38.4 70.3 1987 15.6 1977	DATA FO 33.0 71.5 1983 12.4 1977	R WATER 1 26.6 47.4 1983 11.0 1977	YEARS 1943 31.1 85.2 1984 13.1 1977 NDAR YEAR	- 199 91.4 199 1983 25.4 1975	94.1 94.1 244 1983 35.2 1977 FOR 1991 WA	78.4 223 1986 29.3	63.7 140 1975 23.0	46.2 104 1986 16.0 1988 WATER YEA	41.1 105 1984 14.3 1976 IRS 1943	47.2 210 1986 14.6 1976
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL 10 PERC 50 PERC	TOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA DAILY MEA DAILY MEAN SEVEN-DAY ANEOUS PEANEOUS LOW RUNOFF (ACHIEVE ENT EXCEEL ENT EXCEEL ENT EXCEEL	AN N N N MINIMUM AK FLOW AK STAGE V FLOW C-FT) OS		15791 43.3 336 17 18 401 6.0 14 31320 73 31 19	Mar 12 Feb 3 Jan 31 Mar 12 Mar 12 Feb 24		244 19 20 256 5.49 17 28550 67 29 21	Aug 3 Jan May May		53.0 111 23.6 1300 8.4 9.0 2030a 8.30 38410 97 35 19	Jan 1: Jan 1: Sep 1:	1986 1977 7 1989 5 1975 3 1975 8 1942 2 1986

a Instantaneous peak flow outside period of record is 6,200 ft ³/s in Apr. 1965, from rating extended above 2,100 ft³/s.
 e Estimated.

VERMILLION RIVER BASIN

05345000 VERMILLION RIVER NEAR EMPIRE, MN--Continued

WATER QUALITY RECORDS

PERIOD OF RECORD. -- 1972-76, 1980-81, 1990 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
FEB 05	1300	20	1050	8.0	6.5	9.9	60	130	73	24	97	5.9
APR 10	1000	36	838	7.9	6.0	10.5	70	69	83	27	61	3.7
MAY 16	1100	66	726	7.8	15.5	7.6	320	390	82	24	36	3.1
DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)
FEB 05 APR 10	31 47	150 95	0.30	18 17	0.04	10 4.9	0.06 0.01	1.4	1.4	2.1 0.90	1.7	1.6
MAY 16	40	63	0.30	14	0.04	5.0	0.08	1.2	0.9	0.52	0.46	0.42
DAT!	1,2 TR CHLO BENZ E TOT (UG/ (345	ÍDIÉ ROANI ENE -CE AL TOI L) (UG/	SENZ 1,2- THRA CHLO TNE BENZ TAL TOT 'L) (UG/	RO- CHLO ENE BENZ AL TOT L) (UG/	RO- CHLO ENE BENZ AL TOT L) (UG/	RO- CHLO ENE PHE AL TOT L) (UG/	RO- METH NOL PHE AL TOT L) (UG/	YL- CHLO NOL PHE AL TOT L) (UG/	DI- DI RO- NIT NOL PHE AL TOT L) (UG/	RO- NİTR NOL TOLU AL TOT L) (UG/	O- NÍTR ENE TOLU AL TOT L) (UG/	O- ENE AL L)
10	<5.	0 <10	.0 <5.	0 <5.	0 <5.	0 <20	.0 <5.	0 <5.	0 <20	.0 <5.	0 <5.	0
DAT	2- CHLO NAP THAL E TOT (UG/ (345	RO- 2- H- CHLO ENE PHE AL TOT L) (UG/	RO- NIT CNOL PHE CAL TOT L) (UG/	ROORI NOL CRES AL TOT L) (UG/	TRO PHEN HOL ETH AL TOT L) (UG/	O- CHLO YL PHEN YL PHEN ER ETH AL TOT L) (UG/	RO- NYL 4- YL NIT ER PHE AL TOT L) (UG/	RO- NAPH NOL EN AL TOT L) (UG/	TH- NAPH E YLE AL TOT L) (UG/	TH- ANTH NE CE AL TOT L) (UG/	NE PYR AL TOT L) (UG/	ENE AL L)
APR 10	<5.	0 <5.	0 <5.	0 <30.	0 <5.	0 <5.	0 <30	.0 <5.	0 <5.	0 <5.	0 <10	.0

VERMILLION RIVER BASIN

05345000 VERMILLION RIVER NEAR EMPIRE, MN--Continued

DATE	BENZO B FLUOR- AN- THENE TOTAL (UG/L) (34230)	BENZO K FLUOR- AN- THENE TOTAL (UG/L) (34242)	BENZO A ANTHRAC ENE1,2- BENZANT HRACENE TOTAL (UG/L) (34526)	BENZOGH I PERYL ENE1,12 -BENZOP ERYLENE TOTAL (UG/L) (34521)	BIS (2- CHLORO- ETHOXY) METHANE TOTAL (UG/L) (34278)	BIS (2- CHLORO- ISO- PROPYL) ETHER TOTAL (UG/L) (34283)	BIS(2- ETHYL HEXYL) PHTHAL- ATE TOTAL (UG/L) (39100)	BIS 2- CHLORO- ETHYL ETHER TOTAL (UG/L) (34273)	CHRY- SENE TOTAL (UG/L) (34320)	DIETHYL PHTHAL- ATE TOTAL (UG/L) (34336)	DI- METHYL PHTHAL- ATE TOTAL (UG/L) (34341)
APR 10	<10.0	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0
DATE	DI-N-BUTYL PHTHAL-ATE TOTAL (UG/L) (39110)	DI-N- OCTYL PHTHAL- ATE TOTAL (UG/L) (34596)	FLUOR- ANTHENE TOTAL (UG/L) (34376)	FLUOR- ENE TOTAL (UG/L) (34381)	HEXA- CHLORO- BENZENE TOTAL (UG/L) (39700)	HEXA- CHLORO- BUT- ADIENE TOTAL (UG/L) (39702)	HEXA- CHLORO- CYCLO- PENT- ADIENE TOTAL (UG/L) (34386)	HEXA- CHLORO- ETHANE TOTAL (UG/L) (34396)	INDENO (1,2,3- CD) PYRENE TOTAL (UG/L) (34403)	ISO- PHORONE TOTAL (UG/L) (34408)	N-BUTYL BENZYL PHTHAL- ATE TOTAL (UG/L) (34292)
APR 10	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0
D <i>a</i>	SOD PRO AM ATE TO (UG	TRO- N-N II-NS PYL- ME INE LAM TAL TO	ODIS THY- PH INE LAM TAL TO (/L) (UG	INE AL TAL TO	ENE BEN TAL TO (U)	CHI TRO- N IZENE CE TAL TO I/L) (UG	META CHL RESOL PH DTAL TO S/L) (UG	ENOL THOTAL TO	NAN- (C RENE 5 TAL TO (L) (UG	TAL TO	ENE TAL /L) 469)
APR 10.	<5	5.0 <5	5.0 <5	.0 <5	5.0 <5	5.0 <3	30.0 <3	0.0 <5	.0 <5	5.0 <5	5.0

CANNON RIVER BASIN

05353800 STRAIGHT RIVER NEAR FARIBAULT, MN

LOCATION.--Lat 44°15'29", long 93°13'51", in WkSEk sec.9, T.109 N., R.20 W., Rice County, Hydrologic Unit 07040002, on right bank 15 ft downstream from highway bridge, 2.8 mi upstream from Falls Creek and 3.2 mi southeast of Faribault.

DRAINAGE AREA.--442 mi².

PERIOD OF RECORD.--October 1965 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,034.58 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 1,500 ft³/s and maximum (*):

Date	Time		scharge ft ³ /s)	Gage 1			Date	Time		Discharge (ft ³ /s)		height (t)
May 6 May 18 May 28	2100 2200 1200		2,760 1,500 1,520	8.6 6.9 6.9	96		Jul. 12 Jul. 22 Aug. 8	0900 1700 1400		2,780 *3,720 3,280	*9.	62 58 17
		DISCHARG	E, CUBIC	FEET PER		WATER YE MEAN VA	EAR OCTOBER	1990 TO	SEPTEMBE	CR 1991		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7	63 63 77 79 73	60 61 59 63 59	53 37 29 48 54	e37 e37 e37 e37 e37	e31 e32 e34 e36 e38 e40	e65 e72 e76 e85 e100	493 456 415 378 351 328	780 675 565 587 1470 2720	653 588 614 508 446 391	179 181 169 161 152 140	434 374 339 312 285 259	132 125 122 114 109 101
8 9 10 11	69 65 69 70 66 65	61 59 57 58 60 58	50 50 52 52 55 59	e37 e37 e37 e37 e37 e37	e42 e42 e42 e42 e43	e138 e167 e150 e143 e145 e150	303 296 310 329 305	2640 2130 1790 1490 1230	349 322 296 327 437	128 116 109 102 151	337 2700 2910 2670 2080	93 95 103 93 99
12 13 14 15 16 17	65 64 61 60 60	55 56 55 57 58 55	62 50 48 e48 e47 e48	e38 e39 e39 e40 e41 e41	e45 e45 e43 e42 e45 e46	e157 e150 e150 e152 e157 e160	293 439 735 855 778 624	1010 892 778 668 708 833	516 417 403 847 949 717	2110 1640 1790 1490 1130 830	1600 1270 939 695 597 564	134 113 255 286 229 187
18 19 20 21 22 23	67 64 66 7 4 7 1 70	52 53 55 54 54 50	e46 e45 e43 41 e40 e39	e42 e45 e44 e43 e49 e40	e46 e46 e48 e50 e48 e49	e165 e190 234 317 352 882	543 661 744 677 569 504	1240 1460 1360 1160 929 766	552 439 367 333 311 281	675 562 585 791 2510 2460	497 432 385 342 303 272	163 145 133 126 121 113
24 25 26 27 28 29	69 66 65 64 63 61	49 47 46 48 49 42	e38 e38 e38 e38 e38 e38	e37 e34 e33 e32 e31 e31	e52 e55 e57 e59 e60	1100 1010 781 709 849 724	438 385 354 404 415 526	669 612 916 1310 1420 1170	259 243 224 207 188 174	1800 1140 783 610 700 837	250 230 212 194 177 161	131 132 129 123 115 107
30 31	61 62	51 	e37 e37	e31 e31		561 509	729	936 755	161	681 543	172 147	102
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2056 66.3 79 60 4080 .15	1641 54.7 63 42 3250 .12 .14	1397 45.1 62 29 2770 .10	1168 37.7 49 31 2320 .09 .10	1258 44.9 60 31 2500 .10	10600 342 1100 65 21030 .77 .89	14637 488 855 293 29030 1.10 1.23	35669 1151 2720 565 70750 2.60 3.00	12519 417 949 161 24830 .94 1.05	25255 815 2510 102 50090 1.84 2.13	22139 714 2910 147 43910 1.62 1.86	4030 134 286 93 7990 .30 .34
STATIST MEAN MAX (WY) MIN (WY)	ICS OF MON 210 831 1969 17.0 1977	THLY MEAN 170 595 1971 15.1 1977	DATA FOI 103 336 1983 11.0 1977	R WATER YE 62.8 167 1974 11.0 1977	EARS 1966 106 837 1984 12.9 1968	- 1991, 515 1270 1973 26.4 1968	568 1623 1983 70.2 1977	YEAR (WY) 416 1224 1973 58.1 1976	332 1062 1967 45.8 1976	272 1005 1983 26.2 1988	185 1136 1979 16.2 1976	152 488 1986 16.0 1976
ANNUAL N ANNUAL N HIGHEST	MEAN ANNUAL ME	AN	FOR 1	990 CALENI 89787 246	OAR YEAR	F	FOR 1991 WAT 132369 363			258	ARS 1966	
HIGHEST LOWEST I ANNUAL S INSTANTA INSTANTA INSTANTA ANNUAL I ANNUAL I	ANNUAL MEA DAILY MEA DAILY MEAN SEVEN-DAY ANEOUS PEA ANEOUS PEA ANEOUS LOW RUNOFF (AC RUNOFF (CF RUNOFF (IN	N MINIMUM K FLOW K STAGE FLOW -FT) SM)		3180 17 18 6030 11.31 16a 178100	Jan 1 Jan 1 Jul 7 Jul 7 Dec 3		2910 29 31 3720 9.58 16a 262600	Aug 9 Dec 3 Jan 27 Jul 22 Jul 22 Dec 3		605 43.9 5410 11 11 6030 12.74 10 187200 . 58 7.94	May Feb 1 Feb 1 Jul b Mar Oct 2	1977 2 1973 8 1968 8 1968 7 1990 5 1974 7 1976
10 PERCE 50 PERCE	RUNOFF (IN ENT EXCEED ENT EXCEED ENT EXCEED	S S		.56 7.56 636 79 19			.82 11.14 921 133 39			7.94 646 102 27		

 $[\]begin{array}{ll} \textbf{a} & \text{Result of temporary storage from freeze up.} \\ \textbf{b} & \text{Backwater from ice.} \end{array}$

Estimated.

Gage height

Discharge

ZUMBRO RIVER BASIN

05372995 SOUTH FORK ZUMBRO RIVER AT ROCHESTER, MN

LOCATION.--Lat 44°03'42", long 92°27'58", in NW\nE\ sec.23, T.107 N., R.14 W., Olmsted County, Hydrologic Unit 07040004, on left bank 50 ft downstream from 37th Street bridge, 0.2 mi upstream from sewer plant, and 2.0 mi downstream from Silver Lake Dam.

DRAINAGE AREA.--303 mi².

PERIOD OF RECORD.--March 1981 to current year.

GAGE.--Water-stage recorder. Datum of gage is 950.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Slight regulation at times from Silver Lake.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 6, 1978, reached a stage of about 28.0 ft, on upstream side of bridge, discharge 30,500 ft³/s. This is the highest known stage since at least 1908.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft³/s and maximum (*):

Discharge Gage height

Date	Time	(ft ³ /s)	(ft)	gnt		Date	Time		(ft ³ /s)		t)
Mar. 23 May 6	1730 0700	*	1,440 2,640	6.49 *8.49			July 22 Aug. 9	0230 0430		2,310 1,750		00 05
		DISCHARG	E, CUBIC	FEET PER	SECOND, DAILY	WATER YE MEAN VA	AR OCTOBER	1990 TO S	SEPTEMBE	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	e85 e85	68 67	64 60	e43 e42	34 36	96 92	298 268	883 675	339 340	140 112	139 134	80 81
3	e 90	73	60	e41	44	78	257	574	314	103	126	80
	e93	73	59	e41	47	89	246	534	294	104	119	76
4 5 6	e88 e82	72 72	64 66	41 40	46 47	109 190	247 234	974 2330	280 245	101 95	110 103	73 73
7	e75	72	65	40	50	187	216	1230	226	95	237	73
8	e78	72	65 64	40	53	187	343	913	212 191	94	1160	105
9 10	e78 e76	70 72	64 65	41 40	53 53	168 148	673 487	864 711	222	88 94	1460 632	86 78
11	e73	70	65	41	51	156	378	609	217	186	424	90
12	e74	68 67	67 62	42 42	53	180 170	360	548 516	195	284 229	347 290	84
13 14	e72 e72	67 67	62 57	43	59 5 7	152	427 620	462	182 205	160	251	82 154
15	e70	67	66	45	50	150	722	435	369	132	221	111
16	e69	66 66	64	45 45	57 56	162 155	549	522 522	360 284	117 185	212 209	103 90
17 18	e70 e79	66 66	65 65	43	56 56	159	455 438	524	242	151	190	87
19	e74	67	63	47	57	. 180	636	581	216	131	171	82
20 21	e75 e84	68 66	62 48	44 42	56 65	22 5 289	658 506	514 452	198 186	139 126	156 148	78 76
22	e82	64	e48	50	60	410	450	412	175	805	137	76
23	e80	65	e48	43	58	1000	417	382	164	419	126	75
24 25	e78 e76	66 65	e47 e46	e41 40	63 61	815 485	377 339	350 307	155 146	259 218	118 112	95 82
26	e76	64	e46	37	68	411	381	299	136	123	108	78
27	e74	65 60	e46	36	66	447	839	409	128	93	100	76
28 29	e73 e72	69 60	45 e45	37 37	65 	471 443	863 815	467 412	118 111	195 199	95 89	76 74
30	e71	64	e45	36		343	1230	362	107	178	86	69
31	e 70		e44	35		300		353		156	82	
TOTAL	2394	2031	1776	1280	1521	8447	14729	19126	6557	5511	7892	2543
MEAN MAX	77.2 93	67.7 73	57.3 67	41.3 50	54.3 68	272 1000	491 1230	617 2330	219 369	178 805	255 1460	84.8 154
MIN	69	60	44	35	34	78	216	299	107	88	82	69
AC-FT	4750	4030	3520	2540	3020	16750	29210	37940	13010	10930	15650	5040
CFSM IN.	.25 .29	.22 .25	.19 .22	. 14 . 16	.18 .19	.90 1.04	1.62 1.81	2.04 2.35	.72 .81	. 59 . 68	. 84 . 97	.28 .31
									.01	.00		.51
STATIST.	1CS OF MON 197	THLY MEAN	114 FO	R WATER Y	EARS 1981 125	1991, 399	BY WATER Y	1EAR (WY) 317	178	213	151	208
MAX	824	337	30 0	167	454	760	795	617	384	546	501	1075
(WY)	1987	1983	1983	1983	1984	1983	1983	1991	1990	1981	1990	1986
MIN (WY)	20.0 1990	24.5 1990	21.0 1990	22.5 1990	23.8 1990	165 1987	106 1981	88.3 1989	49.0 1989	23.2 1988	24.6 1988	31.5 1988
SUMMARY	STATISTIC	S		990 CALENI		F	OR 1991 WA	IER YEAR			ARS 1981	
ANNUAL I	TOTAL MEAN			75844 208			73807 202			206		
	ANNUAL ME	AN		200			202			360		1983
LOWEST	ANNUAL MEA	N		10.0						87.3	0 0	1989
	DAILY MEA DAILY MEAN			1840 21	Apr 24 Jan 6		2330 34	May 6 Feb 1		7710 12		1 1986 2 1988
ANNUAL	SEVEN-DAY	MINIMUM		22	Jan 2		36	Jan 27		14	Sep	8 1988
	ANEOUS PEA			2260	Apr 24 Apr 24		2640	May 6		10000	Sep 2	1 1986
	ANEOUS PEA ANEOUS L O W			0.02	Apr 24		33	May 6 Feb 1,2		20.77 10a	Oct 2	1 1986 3 1981
ANNUAL I	RUNOFF (AC	-FT)		150400			146400	-,-		149300		=
ANNUAL	RUNOFF (CF RUNOFF (IN	SM)		.69 9. 31			. 67 9.0 6			.68 9.24		
10 PERC	ENT EXCEED	S		538			486			467		
50 PERC	ENT EXCEED	S		85			9 3			112		
90 PERC	ENT EXCEED	S		23			46			29		

a Result of regulation. e Estimated.

05376000 NORTH FORK WHITEWATER RIVER NEAR ELBA, MN (Hydrologic bench-mark station)

LOCATION.--Lat 44°05'30", long 92°03'57", in sec.7, T.107 N., R.10 W., Winona County, Hydrologic Unit 07040003, on left bank 2.3 mi upstream from Middle Fork, 2.4 mi west of Elba, and 3.5 mi upstream from confluence with South Fork.

DRAINAGE AREA, -- 101 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --May 1939 to September 1941, July 1967 to current year.

REVISED RECORDS. --WRD MN-74: 1967(M), 1969(M), 1971(M), 1972(M), 1973(M). WRD MN-80-2: 1978.

GAGE. --Water-stage recorder. Datum of gage is 769.60 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 12, 1939, nonrecording gage at site 2 mi downstream at different datum. Oct. 12, 1939, to Sept. 30, 1941, water-stage recorder at site 600 ft downstream at present datum. Prior to July 6, 1978, water-stage recorder at same site and present datum (gage destroyed by flood of July 1978), July 6 to Oct. 30, 1978, nonrecording gage at same site and present datum.

PEMADES --Paceds seed except those for estimated daily discharges, which are fair. water-stage recorder at

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

REMARKS .- - Records good except those for estimated daily discharges, which are fair.

		DISCHAR	COE, COB	IC FEEL FE		MEAN VA		1990 10 2	EF I EMDE	V 1991		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22	23	22	23	e22	e18	37	105	63	30	36	31
2	21	23	23	23	e22	e18	33	87	59	30	35	30
3 4 5	25	23	24	23	e22	e18	32	75	55	31	35	30
4	25	23	24	22	e22	e17	31	69	53	32	35	30
5	25	23	24	22	e22	18	31	90	52	35	34	29
6 7	25 23	23 23	23 22	22 22	e21	24 27	30 28	180 113	47 45	34 31	33 39	29 29
8	23 22	23	23	23	e21 e21	29	31	95	43	31	140	34
9	22	23	23	22	e21	25	35	94	42	31	131	35
10	22	23	23	22	e21	23	39	78	41	31	73	34
11	22	23	23	24	e21	24	35	68	40	32	59	31
12	22	23	23	24	e21	25	32	60	40	68	52	33
13	22	23	23	23	e20	27	31	64	38	56	49	33
14	22	23	22	24	e20	28	33	64	38	38	48	37
15	22	23	24	24	e20	27	34	55 60	59	33 33	46	39
16 17	22 22	24 24	24 24	24 24	e20 e20	27 27	33 33	69 67	85 50	33 44	45 45	37 34
18	23	23	24	24	e20	27	35	59	42	50	45	33
19	23	23	25	24	e20	29	39	59	39	39	42	31
20	23	23	25	24	e20	36	49	55	38	38	41	31
21	26	25	22	23	e20	53	42	51	37	39	40	31
22	25	24	23	23	e20	61	40	48	37	109	40	31
23	25	23	14	23	e20	98	38	48	36	95	38	31
24	. 24	23	9.6	26	e19	88	36	49	35	5 5	37	31
25	24	23	17	24	e19	62	34	51	34	45	36	32
26	23	23	17	23	e19	53	34	55	33	41	35	32 30
27 . 28	23 22	23 23	22 23	23 23	e19 e19	49 48	56 78	71 89	34 32	39 39	35 33	29
29	22	22	23	e23	919	45	96	110	31	40	33	30
30	22	22	23	e23		39	175	74	30	40	33	30
31	22		24	e23		38		66		38	32	
TOTAL	713	693	685.6	720	572	1128	1310	2318	1308	1327	1455	957
MEAN	23.0	23.1	22.1	23.2	20.4	36.4	43.7	74.8	43.6	42.8	46.9	31.9
MAX	26	25	25	26 22	22	98	175	180	85	109 30	140	39
MIN AC-FT	21	22 1370	9.6 1360	1430	19 1130	17 2240	28 2600	48 4600	30 2590	2630	32 2890	29 1900
CFSM	1410 . 23	.23	.22	.23	.20	.36	.43	.74	.43	.42	.46	.32
IN.	. 26	.26	.25	.27	.21	.42	.48	.85	.48	.49	.54	.35
												•
					YEARS 1939		BY WATER					
MEAN	36.1	34.5	31.1	29.6	33.6	91.0	59.1	48.4	57.0	59.2	37.3	40.5
MAX	143 1987	71.6 1987	58.3	74.6	97.2	244	177	120 1973	364 1974	317 1978	71.2 1979	184 1986
(WY) MIN	14.4	14.1	1987 12.9	1973 13.1	1985 14.2	1973 14.5	1974 14.8	15.6	25.8	15.8	15.0	13.5
(WY)	1968	1968	1940	1940	1968	1968	1968	1968	1972	1967	1967	1940
								_				
	STATISTI	CS	FOR	1990 CALE	NDAR YEAR	F	OR 1991 WA	TER YEAR		WATER YE	ARS 1939 -	1991
ANNUAL				15348.6			13186.6					
ANNUAL		CC A N		42.1			36.1			46.8 93.3		1974
	M JAUNNAL M ANNUAL ME									19.4		1968
	DAILY ME			887	Jul 7		180	May 6		6440	Jun 21	
	DAILY MEA			9.6	Dec 24		9.6	Dec 24		9.6	Dec 24	
ANNUAL	SEVEN-DAY	MUMINIM		18	Dec 21		18	Dec 21		12	Dec 30	1939
INSTANI	CANEOUS PE	AK FLOW		3420	Jul 7		220	Apr 30		16100	Jun 21	
	ANEOUS PE			8.49	9 Jul 7		5.35	Apr 30		16.32		
INSTANT	CANEOUS LC	W FLOW		00115				Dec 26		7.0a	Dec 26	1990 .
ANNUAL	RUNOFF (A	NCTT)		30440	,		26160 .36			33920 .46		
ANNIIAT	RUNOFF (I	NCHES)		. 42 5.6			4.86			6.30		
10 PERC	CENT EXCER	DS.		55	•		59			68		
50 PERC	ENT EXCEP	DS		24			30			32		
	ENT EXCE			21			22			17		

a Result of freezeup. b From floodmark.

e Estimated.

05376000 NORTH FORK WHITEWATER RIVER NEAR ELBA, MN--Continued (Hydrologic bench-mark station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1967 to current year.

REMARKS. -- Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
NOV 19	1300	23	524	533	8.3	8.2	6.5	0.3	746	12.7	K4	K12
JAN 30	1045	23	546	572	8.7	8.0	0.5	1.8	724	13.9	2	80
MAR 20	1030	34	548	531	8.2	8.2	6.0	1.4	750		К2	20
APR 29 29 30	1200 1750 0700	77 115 216	 	 		 	13.0 13.5	 	 			
MAY 09	0945	97	640	587	8.3	8.1	10.0	10	744	11.3	400	480
JUL 25 30 30	1132 1100 1130	45 40 40	589 378	532 	8.1 	8.2	16.0 16.0 16.0	4.8	744 	11.1	 	62
AUG 29	0930	35	562	568	8.1	8.1	18.0	2.4	745	9.6	110	K1000
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
NO V 19	73	27	5.0	1.1	251	244	0	306	13	9.6	0.1	13
JAN 30	75	26	4.6	1.0	276	280	0	336	15	11	<0.1	16
MAR 20 APR	69	25	5.9	1.3	221	254	0	270	15	10	0.1	12
29												
29 30												
MAY 09 JUL	84	22	7.1	2.4	256	257	0	312	18	18	0.1	14
25												
30 30	81	26	6.6	2.0	262	272	0	320	18	16	0.1	16

WHITEWATER RIVER BASIN

05376000 NORTH FORK WHITEWATER RIVER NEAR ELBA, MN--Continued

RESIDU AT 180 DEG. DIS- SOLVE (MG/L	JÉ GEN, NITRITE C DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. Z FINER THAN .062 MM (70331)
206	-0.01	0.0	0.07			0.00	0.00	0.00	0.00	20	32
	0.01	3.2	0.04					0.04		_	20
										629	
332	0.03	6.2	0.03	0.03	1.0	0.20	0.13	0.15	0.13	61	72
										42	
	0.01	4.5			U.5 		`			50	26
311	0.01	3.2	0.02	0.02	0.6	0.08	0.07	0.05	0.05	47	54
re	TIME (UC AS (01: 1300 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 11000 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100 <: 1100	JM, ARSEI (S- DII (S-	S- DIS SOLVED (UGAS) AS 1	UM, LIU - DIS ED SOL //L (UG BA) AS 05) (010 1 <0. 0 <0.	M, CADM:	IUM MIUI SVED DISS VED SOLV //L (UG CD) AS (225) (0100 0 <1 0 <1	M, COBA - DIS VED SOLV /L (UG CR) AS (30) (010	- DIS ED SOL /L (UG CO) AS 35) (010	- DI: VED SOLV: /L (UG /L (UG AS 1) 40) (010)	S DI VED SOLD (UG FE) AS 46) (010	S- VED J/L J/B) 49)
DATE DV. 19 AY 09 31.	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) 8	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056) 7 21	MERCURY DIS- SOLVED (UG/L AS HG) (71890) 0.1 <0.1	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE-NIUM, DIS-SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080) 72 97	VANA- DIUM, DIS- SOLVED (UG/L) (AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090) 4 <3	
	RESIDUAT 180 DEG. DIS- SOLVE (MG/I (70300 296 326 299 332 3311 DATE DATE	RESIDUÉ GEN, NITRITE DEG. C DIS-SOLVED (MG/L) AS N) (70300) (00613) 296 <0.01 326 <0.01 299 0.01	RESIDUÉ GEN, MITRITE DIS- DIS- SOLVED (MG/L) (MG/L) AS N) AS N) (70300) (00613) (00631) 296 <0.01 2.9 326 <0.01 3.3 299 0.01 3.2	RESIDUÉ GEN, GEN, NITRO- AT 180 NITRITE NO2+NO3 GEN, DIS- SOLVED SOLVED TOTAL SOLVED (MG/L (MG/L (MG/L) (MG/L) AS N) AS N) AS N) (70300) (00613) (00631) (00631) (00610) 296 <0.01 2.9 0.04 326 <0.01 3.3 0.01 299 0.01 3.2 0.04 332 0.01 3.2 0.04 332 0.01 4.5 0.02 311 0.01 3.2 0.02 ALUM- INUM, ARSENIC BARIT DIS- DIS- SOLVED SOLV	RESIDUÉ GEN, AT 180 NITRITE NO2+NO3 GEN, AMMONIA DEG. C DIS- DIS- AMMONIA DIS- SOLVED SOLVED SOLVED SOLVED SOLVED (MG/L)	RESIDUÉ GEN, AT 180 NITRICH NO2+NO3 GEN, AMMONIA MONIA HORIA - DIS-SOLVED SOLVED SOLVED TOTAL SOLVED S	RESIDUÉ GEN, ATTIBO NITRITE NO2+NO3 DIS- DIS- DIS- DIS- DIS- DIS- SOLVED (MG/L)	RESIDUÉ GEN GEN	RESIDUÉ GEN, GEN, OLO OLO	RESIDUÉ GEN	RESIDUÉ GEN, GEN, GEN, GEN, GEN, GEN, MATT 180 MITRITE MOSTA + PROS PROSUS PROSUS CREME MANDRIA DISS DISS DISS MANDRIA SOLVED DISS MANDRIA SOLVED MOSTA + PROSUS DISS GREME MANDRIA SOLVED MOSTA MANDRIA SOLVED MOSTA MANDRIA SOLVED MOSTA MOSTA + PROSUS DISS GREME MOSTA MOSTA + PROSUS DISS GREME MOSTA MOSTA + PROSUS DISS GREME MOSTA MOSTA + PROSUS DISS MOSTA MOSTA MOSTA + PROSUS DISS MOSTA MOSTA

WHITEWATER RIVER BASIN 05376000 NORTH FORK WHITEWATER RIVER NEAR ELBA, MN--Continued

RADIOCHEMICAL ANALYSIS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) (80060)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)
JAN 30	1045	0.6	<0.6	2.3	<0.6	1.7	<0.6	0.05	0.56
MAR 20	1030	0.6	<0.6	2.8	<0.6	2.1	<0.6	0.05	0.62

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	APR	TL.	JUNI	Ε	JUL	Y
15			61	15		
16			97	22		
23					195	73
2 9	146	55				
30	500	236				

05376100 MIDDLE FORK WHITEWATER RIVER NEAR ST. CHARLES, MN

LOCATION.--Lat 44°02'20", long 92°07'00", in SE% sec.26, T.107 N., R.11 W., Olmsted County, Hydrologic Unit 07040003, on left downstream side of bridge on County Road 107, 8.5 mi upstream from confluence with North Fork

DRAINAGE AREA. -- Undetermined.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1987 to June 1988 (discharge measurements only). July 1988 to current year during open-water periods only.

GAGE. -- Water-stage recorder. Datum of gage is undetermined.

REMARKS. -- Records good. Gage operated during open-water period only. Data for years previous to the 1991 water year are questionable and were not published.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed 637 ft³/s, Mar. 11, 1989, gage height, 13.42 ft; minimum discharge observed, 4.9 ft³/s, June 29, 1989.

EXTREMES FOR CURRENT PERIOD.--March to September 1991: Maximum discharge 542 ft³/s, July 21, gage height, 12.87 ft; minimum 6.7 ft³/s, Mar. 15-18, gage height, 10.62 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

					DAIL	MEAN VAL	UES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							14	26	22	12	18	13
Ž							14	24	21	12	18	13
3							13	22	19	11	17	13
ă							13	22	18	14	17	13
3							13	52	17	12	16	13
6							13	35	16	11	16	12
7							13	27	16	11	18	13 12
8							16	2 9	16	11	46	14
ĝ							18	28	15	ii	24	14
							15	25 25	16	11	21	12
10							15	25	10	11	21	12
11							14	24	16	12	19	13
12							15	23	15	31	19	13
13							17	28	16	13	18	13
14							21	25	16	13	17	15
15						6.7	20	2 3	44	13	17	13 13 15 14
16						6.7	17	36	20	13	17	13
17						6.7	17	27	17	25	18	12
18						6.9	16	25	16	16	17	12
19						8.5	23	24	15	16	16	11
20						12	19	23	15	18	16	13 12 12 11 11
						12						
21						19	18	22	14	63	16	11
22						18	18	21	14	61	15	11
23						36	18	21	14	26	15	11
24				,		20	17	21	14	22	15	12
25						18	16	20	14	20	14	11 12 12
26						17	17	21	13	19	14	11
27						18	3 2	22	13	19	14	îi
28						17	21	26	12	21	13	10
29						16	53	21	12	20	13	11
29 30							35	19	12	18	13	ii
31						15 15		31		18	13	
					_	1.0						
TOTAL							566	793	498	593	540	368
MEAN							18.9	25.6	16.6	19.1	17.4	12.3
MAX							53	52	44	63	46	15
MIN							13	19	12	11	13	_10
AC-FT							1120	1570	988	1180	1070	730
CFSM							.75	1.02	.66	. 76	.69	.49
IN.							. 84	1.17	.74	. 8 8	.80	. 54

05376100 MIDDLE FORK WHITEWATER RIVER NEAR ST. CHARLES, MN--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- September 1987 to current year during open-water periods only.

INSTRUMENTATION. -- Automatic sampler since September 1987 for storm-event sampling during open-water periods. REMARKS. -- Data for years previous to the 1991 water year are questionable and were not published.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
MAR					
19	1025	9.0	4.0	46	1.1
23	1224	32	3.0	351	30
APR					
29	1330	81	13.5	539	118
29	1720	57	14.0	558	86
30	0915	35		271	26
MAY					
22	1245	21	18.0	48	2.7
JUN					
15	1324	33	19.0	782	70
JUL	1145	11			• •
11		11	20.0	44	1.3
21	2300	110	20.0	1080	321
22	1330	57		495	76
30	1301	18	16.0	66	3.2

05376800 WHITEWATER RIVER NEAR BEAVER, MN

LOCATION. -- Lat 44°00'19", long 92°00'19", in SW\sE\sec.15, T.108 N., R.10 W., Winona County, Hydrologic Unit 07040003, on left bank at downstream side of bridge on County Road No. 30, 0.5 mi above mouth of Beaver Creek, and 4.7 mi north of Elba.

DRAINAGE. -- 271 mi².

WATER-DISHARGE RECORDS

PERIOD OF RECORD. --May 1975 to September 1985, May 1991 to current year.

GAGE. --Water-stage recorder. Datum of gage is 692.01 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1976, at datum 2.00 ft higher.

REMARKS. --Records good except those for estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD. --Maximum discharge since at least 1939, 19,200 ft³/s, June 21, 1974, gage height, 13.00 ft, present datum, determined by contracted-opening measurement.

EXTREMES FOR CURRENT PERIOD. --May to September 1991: Peak discharges greater than base discharge of 2,000 ft³/s and maximum (*):

Date	Tin		ischarge (ft ³ /s)	Gage heig	ght			Dat	e	1	ime	Discharge (ft ³ /s)		height (ft)
Jul 22	010	00	*2,040	*6.95				No	other	peak	greater	than base	disch	arge.
		DISCH	ARGE, CU	BIC FEET PE		WATER Y MEAN		TOBER	1990	TO SE	PTEMBER	1 9 91		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	. A	PR	MAY		JUN	JUL	AUG	SEP
1							_				e210	e120	139	123
2											e192	e123	138	123
3											e164	e130	140	122
4 5											e155 e150	e132 e138	139 138	121 121
6											e137	e129	138	119
ž							_				e131	e119	152	118
8							_				e128	e115	340	126
9							-				e126	e107	336	130
10							-				e124	e117	247	122
11											e120	e114	212	114
12											e117	e182	195	119
13											e130	e170	185	112
14 15									220		e180 e312	e130 e124	180 175	126 127
16									311		e231	e107	172	116
17									285		e171	e141	177	112
18							_		e236		e160	e169	167	109
19							_		e228		e148	e130	160	109
20									e204		e139	e124	158	109
21									e188		147	e188	156	117
22									e175		144	703	152	116
23 24									e162 e160		141 e130	280 191	151 148	110 121
25									e161		e130	162	145	123
26							_		e169		e130	148	142	114
27							-		e180		e124	142	138	109
28							-		e200		e118	153	132	116
29							-		224		e117	155	130	115
30									198		e118	147	129	109
31									209			144	127	
TOTAL											4524	5034	5238	3528
MEAN MAX											151 312	162 703	169 340	118 130
MIN											117	107	127	109
AC-FT							_				8970		10390	7000
CFSM							-				. 56	.60	. 62	.43
IN.							-				.62	.69	. 72	.48
STATISTI	CS OF MO	NTHLY M	EAN DATA	FOR WATER Y	EARS 197	5 - 1991	1, BY W	ATER	YEAR (W	√Y)				
MEAN	131	138	128	120	141	264	1:	80	174		174	237	147	143
MAX	187	203	180	188	236	512		64	255		240	973	205	230
(WY)	1984	1984	1984	1980	1985	1985	19	83	1984		1980	1978	1979	1978
MIN	88.0	84.8	77.0	80.6	59.7	84.2	92		89.6	-	112	92.1	87.1	85.5
(WY)	1978	1978	1977	1978	1978	1978	19	77	1977		1976	1977	1977	1977
	STATISTIC	CS			FOR 19	91 PERIC	OD				WA	TER YEARS	19/5 ~	1991
LOWEST A	ANNUAL M NNUAL ME DAILY ME	AN			703	Jul 2	,,					164 203 103 8760	Ju1	1984 1977 6 1978
LOWEST D	AILY MEAN	N MINIMUN	1		107	Jul 9	9,16					53 53	Feb 2 Feb 2	0 1978 0 1978
	NEOUS PEA NEOUS PEA		,		2040 6.9	Jul 2					1	.5400 12.88		6 1978 6 1978
	NEOUS LO		•		93	5 Jul 2 Sep 3							Jul	0 19/0
ANNUAL R	UNOFF (A	C-FT)				•					11	9100		
ANNUAL R	UNOFF (C) UNOFF (I) imated.											.61 8.24		
e Est	inaveu.													

05376800 WHITEWATER RIVER NEAR BEAVER, MN--Continued WATER QUALITY RECORDS

PERIOD OF RECORD. -- Water years, 1975-1981, 1991.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	
MAR					
19	1305	120	7.0	40	13
23	1610	313	3.0	347	293
APR					
29	1345	E460	14.0	1420	
29	1730		14.0	5900	
30	0930	E460	8.0	992	
MAY					
09	1315	304	12.0	227	186
16	2025	502	17.0	8640	11700
JUN	1067	210	10.0	2012	0450
15 JUL	1357	319	19.0	2 840	2450
10	1145	123	18.0	54	18
21	2318	980	21.0		23000
22	1405	600	22.0	975	1580
30	1206	145	16.0	109	43
AUG	1200	213	10.0	100	70
08	1125	369	16.0	515	513
			20.0		

GARVIN BROOK BASIN

05378235 GARVIN BROOK NEAR MINNESOTA CITY, MN

LOCATION.--Lat 44°04'16", long 91°45'51", in SELNEL sec. 15, T.107 N., R.8 W., Winona County, Hydrologic Unit 07040003, on left bank, 20 ft downstream from County 23 bridge, 1.8 mi south of Minnesota City, and 2.3 mi upstream from Rollingstone Creek.

PERIOD OF RECORD. -- March 1982 to November 1983, January 1984 to current year (partial winter records in 1984), (discontinued).

GAGE. -- Water stage recorder and broad-crested weir.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

		DISCHARG	E, CUBIC	FEET PER			YEAR OCTOBER VALUES	1990 TO	sep tem ber	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29	27	27	e30	e27	24	e27	39	40	e31	44	e36
Ž	29	28	27	e30	e27	27		37	40	e30	45	e35
3	29	28	28	e30	e27	24		36	34	e28	41	e34
4	29	29	37	e30	e27	21		36	34	e28	42	e33
Ś	29	29	34	e30	e27	22		44	32	e29	41	e33
6	29	28	30	e30	e26	28		41	31	e28	40	e33
7	29	27	29	e30	e 26	26		37	37	e27	43	e33
8	29	27	29	e30	e26	24		39	37	e28	70	e33
ğ	29	27	29	e30	26	23		39	e37	e29	45	e36
10	29	27	28	e30	26	23		39	e38	e30	41	e33
11	29	27	28	e30	26	24		40	e39	e28	38	e33
12	29	27	29	e30	e26	25		39	e38	e37	37	e34
13	29	27	29	e38	e25	e26		38	e38	e35	37	e33
14	29	28	e33	41	25	e26		37	e38	e35	37	e34
15	29	28	33	35	24	e26	32	38	e40	e35	38	e35
16	30	28	32	32	e24	e26		98	e38	e35	37	e33
17	30	28	33	31	e24	e26		56	e37	e35	38	e33
18	30	27	32	31	e24	e27		46	e37	e39	37	e33
19	30	27	32	30	24	e28		44	e36	e39	37	e33
20	30	28	32	30	24	e31	. 31	41	e35	e39	37	e33
21	30	28	e31	e30	24	e38	29	38	e34	e1990	37	e33
22	30	27	e29	e29	24	e 58		37	e34	e500	37	e33
23	30	28	e28	e29	23	e51		37	e33	e105	37	e33
24	29	28	e27	e29	23	e47		37	e32	e58	37	e34
25	28	28	e29	e29	28	e43	25	37	e31	e41	37	e34
26	28	28	e30	e28	e25	e39		37	e30	e41	37	e33
27	27	27	e32	e28	23	e36		36	e30	e41	37	e33
28	27	25	e32	e28	23	e33		36	e30	e43	36	e33
29	27	24	e31	e28		e31		36	e30	e46	36	e33
30	27	27 	e31	e28		e30		35 39	e30	47 46	36 36	e33
31	. 27		e31	e27		e28						
TOTAL	895	822	942	941	704	941		1269	1050	3603	1228	1005
MEAN	28.9	27.4	30.4	30.4	25.1	30.4		40.9	35.0	116	39 <u>.</u> 6	33.5
MAX	30	29	37	41	28	58		98	40	1990	70	36
MIN	27	24	27	27	23	21		35	30	27	36	33
AC-FT	1780	1630	1870	1870	1400	1870	1860	2520	2080	7150	2440	1990
STATIST	ICS OF MOI	NTHLY MEAN	DATA FO	R WATER Y	EARS 1982	- 199	1, BY WATER	YEAR (WY)	1			
MEAN	33.5	31.5	31.1	28.9	34.3	47.3	40.5	35.4	33.4	40.6	32.1	35.1
MAX	51.1	38.6	37.5	34.1	62.3	80.0	85.0	40.9	44.7	116	39.6	67.1
(WY)	1987	1985	1985	1985	1985	1989	1990	1991	1984	1991	1991	1986
MIN	21.4	26.1	25.6	21.1	25.1	30.4		25.6	22.5	23.4	21.9	20.6
(WY)	1989	1990	1990	1989	1991	1991		1989	1989	1988	1988	1988
SUMMARY	STATISTIC	CS	FOR 1	990 CALENI	DAR YEAR		FOR 1991 WA	TER YEAR		WATER Y	EARS 1982 -	1991
ANNUAL	TOTAL			13685			14339					
ANNUAL		PAN		37.5			39.3			35.6 41.2		1985
TIGHTOI	ANNUAL ME ANNUAL ME	V M V M								28.9		1988
TOMESI '	DAILY ME	A N		381	Amm 24		1990	Jul 21		1990	Jul 21	1001
	DAILY MEAN			15	Apr 24 May 15		21	Mar 4		1550	May 15	
	SEVEN-DAY			20	May 9		23	Feb 27		18	Jan 22	
	ANEOUS PE			1290	Apr. 24		11200	Jul 21		11200	Jul 21	
	ANEOUS PE			5.96	Apr. 24		17.79	Jul 21		17.7		1991
	ANEOUS LO			5.50			16	Feb 16		12	Jan 4	
	RUNOFF (A			27140			28440			25820		
	ENT EXCÉEI			58			40			41		
50 PERC	ent exceei	os		29			30			33		
90 PERC	ent exceei	os		25			26			25		

e Estimated.

MISSISSIPPI RIVER MAIN STEM

05378500 MISSISSIPPI RIVER AT WINONA, MN

LOCATION.--Lat 44°03'21", long 91°38'16", in sec.23, T.107 N., R.7 W., Winona County, Hydrologic Unit 07040003, on right bank at Winona pumping station in Winona, 9.5 mi upstream from Trempealeau River, and at mile 725.7 upstream from the Chio River.

DRAINAGE AREA.--59,200 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --June 1928 to current year. Gage-height records collected in this vicinity since 1878 are contained in reports of Mississippi River Commission.

GAGE. --Water-stage recorder. Datum of gage is 639.64 ft above National Geodetic Vertical Datum of 1929. June 10, 1928, to Apr. 15, 1931, nonrecording gage at site 800 ft upstream. Prior to Oct. 1, 1929, at datum 0.20 ft higher and Oct. 1, 1929, to Apr. 15, 1931, at datum 0.12 ft lower. Apr. 16, 1931, to Nov. 12, 1934, nonrecording gage at present site and datum. Since Mar. 31, 1937, auxiliary water-stage recorder 2.7 mi upstream at tailwater of navigation dam 5A.

REMARKS. --No estimated daily discharges. Records good. Some regulation by reservoirs, navigation dams, and powerplants at low and medium stages. Flood flow not materially affected by artificial storage.

EXTREMES FOR PERIOD OF RECORD. --Minimum gage height, -3.38 ft, Aug. 31, 1934 (prior to dam construction in 1936); minimum gage height since 1938, after completion of dam, 1.95 ft, Jan. 27, 1944.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of June 18, 1880, reached an elevation of 657.14 ft, discharge, 172,000 ft³/s, from information by U.S. Army Corps of Engineers. June 10.

DISCHARGE CURIC FEET DED SECOND WATER VEAD OCTORED 1000 TO SEPTEMBER 1001

		DISCH	ARGE, CUB	IC FEET H	PER SECOND	, WATER	YEAR OCTOR	BER 1990 I	O SEPTEMI	BER 1991		
DAY	OCT	NOV	DEC	JAN	FEB	LY MEAN MAF		MAY	JUN	JUL	AUG	SEP
1	18300	26800	15700	12400	10500	12300		55500	71400	56600	35800	20800
Ž	17900	26000	14400	12300	10700	12600		54200	75100	55800	35800	17900
3	15600	25200	14300	12300	10800	13800		53300	79500	56400	35800	15600
4	15900	24200	14700	12700	10900	12600		53300	83600	57500	36000	13800
5	18400	23100	14100	12600	10900	12600	64500	56100	87400	58500	36500	14100
6	19500	21200	13800	12500	11000	12400		61500	89800	59300	36100	16000
7	22200	20500	13700	12400	10700	12400	54800	64600	88400	60400	36100	19300
8	23900	19100	12900	12400	10800	12800	51400	68500	83500	6170 0	39300	21200
9	23600	18400	12800	12400	11200	14800		73100	78400	61800	38900	22800
10	22500	19100	12900	12300	11700	15500	49500	78900	74600	60400	38200	2580 0
11	22400	20300	12700	12300	12400	14900		84800	71400	58100	39100	31100
12	21800	22100	13200	12200	12200	14100		89200	70500	5670 0	36800	390 00
13	21800	21600	15000	12200	11900	14600		92000	68400	55 5 00	35300	45100
14	21000	19800	15500	12100	12100	16700		92800	66400	54900	35500	49900
15	20800	17700	14400	12100	12900	19200	56300	92000	69600	52700	36400	51900
16	20000	18400	14300	12100	13200	19700		91300	70300	50100	38200	53400
17	18400	18100	14200	12000	13100	20100		89100	6 9600	50 20 0	38200	54600
18	17100	16200	14300	12000	13000	19600		85100	67900	52500	36500	56000
19	19100	15100	14000	12000	12900	19000		80500	67000	51600	34500	57700
20	20500	15800	13900	12100	12800	19300		77900	66500	50700	32200	57400
21	24600	15500	12100	12100	12700	20700		76000	65100	50700	30500	56500
22	26700	16500	11400	12000	12700	25700		72800	63200	55700	30300	55900
23	29600	20000	9000	11900	13000	34100	66200	68900	60200	54100	29800	54500
24	35000	21000	8400	11000	13100	39000		65000	59500	50600	28100	51800
25 26	36900 35100	20400 17600	8800 8900	10800 10200	12900 12700	43800 52900		61000	63300 64200	476 00 44600	26900 26000	48900 47500
20 27								58500				4/500
28	33200 31200	15100 14400	9000 9400	10400 10500	12500 12200	63100 69600		56400 57100	63000 62300	42600 41800	25200 24500	42200
29	29300	15200	10300	10500	12200	74500		60400	60400	40300	23500	40600
30	26500	14400	10600	10500		77600		63700	58800	37900	22400	37100
31	27300	14400	12200	10500		79400		66700	30000	36200	20700	37100
TOTAL	736100		390900	365800	337500	889400		2200200	2119300	1623500	1019100	1164000
MEAN	23750	19290	12610	11800	12050	28690		70970	70640	52370	32870	38800
MAX	36900	26800	15700		13200	79400		92800	89800	61800	39300	57700
MIN	15600	14400	8400	12700 10200	10500	12300		53300	58800	36200	20700	13800
	1460000	1148000	775400	725600	669400	1764000		4364000	4204000	3220000	2021000	2309000
CFSM	. 40	.33	,21	,20	.20	.48	1.02	1.20	1.19	.88	.56	.66
IN.	. 46	.36	.25	.23	.21	.56	1.14	1.38	1.33	1,02	.64	.73
STATIS	TICS OF	MONTHLY ME	AN DATA I	OR WATER	YEARS 19	28 - 199	1, BY WATE	ER YEAR (W	Y)			
MEAN	21750	21460	16630	14500	14710	29250	59040	47010	38240	29340	19890	21570
MAX	85950	50040	38540	30480	35900	86420		111500	95980	64490	58410	69490
(WY)	1987	1972	1983	1983	1984	1983		1986	1943	1957	1972	1986
MIN	6774	7367	6282 1934	6742	7874	9023		11930	8450	7063	5391	6790
(WY)	1934	1934	1934	1940	1977	1934	1931	1931	1934	1934	1934	1933
SUMMAT	Y STATTS	TICS	FOR	1990 CAT	ENDAR YEAL	Þ	FOR 1991 13239100	WATER YEA	R	WATER	YEARS 192	8 - 1991
ANNIIAI	. TOTAL	1100	- 011	9827800	DINDING TOTAL		13239100	***************************************	••	**********		
ANNUAL	. MEAN			26930			36270			27810		
HIGHES	T ANNUAL	MEAN								50050		1986
LOWEST	ANNUAL	MEAN								9741		1934
HIGHES	T DAILY	MEAN		74300	Mar 1	9	92800	May 1	4	264000	Apr Dec	20 1965
LOWEST	DAILY M	EAN		8400	Dec 2	4	8400	Dec 2	4	2250	Dec	29 1933
ANNUAL	. SEVEN-D	AY MINIMUN	1	9030	Feb 1	0	9110	Dec 2	3	3210	Dec	27 1933
INSTAN	ITANEOUS	PEAK FLOW		74700	Mar 1	9	92900	May 1	.4	268000	Apr	19 1965
INSTAN	TANEOUS	PEAK STAGE	I	9.	43 Mar 1	9	10.	99 May 1	.4	20.	77a Apr	19 1965
INSTAN	ITANEOUS	LOW FLOW								19401	Dec	12 1980
ANNUAL	. RUNOFF	(AC-FT)		19490000			26260000			20140000		
ANNUAL	RUNOFF	(CFSM)		٠.	45		_ •	61		_•	47	
ANNUAL	RUNOFF	(INCHES)		6.	18		8.	32		6.	38	
10 PEF	CENT EXC	EEDS		4/300			69200	•		57600		
OU PER	CENT EXC	たたりろ		22500			2/300			19200		
SU PER	CENI EXC	ECUS		9900			92800 8400 9110 92900 10. 26260000 8. 69200 27300 12100			9700	Apr Dec Apr 77a Apr Dec 47	

From floodmark.

b Result of ice jam.

MISSISSIPPI RIVER MAIN STEM

05378500 MISSISSIPPI RIVER AT WINONA, MN--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
MAY 08	1603	10.0	56

ROOT RIVER BASIN

05385000 ROOT RIVER NEAR HOUSTON. MN

LOCATION.--43°46'07", long 91°34'11", in SWkNWk sec.33, T.104 N., R.6 W., Houston County, Hydrologic Unit 07040008, on right bank 0.2 mi north of Houston and 1.6 mi upstream from South Fork and 18.2 mi upstream

07040008, on right bank 0.2 mi north of Houston and 1.6 mi upstream from South Fork and 18.2 mi upstream from mouth.

DRAINAGE AREA. --1,270 mi², approximately.

PERIOD OF RECORD. --May 1909 to September 1917, May to November 1929, March 1930 to 1983, 1991. Operated as high-flow partial-record station October 1983 to September 1990. Monthly discharge only for some periods, published in WSF 1308.

REVISED RECORDS. --WSF 895: Drainage area. WSF 1508: 1911-12. WSF 1628: 1948(P).

GAGE. --Water-stage recorder. Datum of gage is 667.00 ft National Geodetic Vertical Datum of 1929. May 28, 1909, to Sept. 30, 1917, nonrecording gage at site 1.3 mi downstream at different datum. May 4, 1929, to Sept. 27, 1933, nonrecording gage and Sept. 28, 1933 to June 26, 1980, recording gage at site 0.9 mi upstream at datum 671.86 ft.

REMARKS. --Records good except those for estimated daily discharges, which are fair. Slight diurnal fluctuation

REMARKS.--Records good except those for estimated daily discharges, which are fair. Slight diurnal fluctuation at low flows caused by powerplants above station.

EXTREME FOR CURRENT YEAR.--Peak discharges above base of 5,000 ft³/s and maximum (*).

Date May 7 Mini	Time 0130 mum dai	Disch (ft ³ *4,9 ly discha	/s) 40	age height (ft) *10.04 ft ³ /s Dec.			Date No peak	Time greater t	Discharg (ft ³ /s) han base	e Gag discharge	e height (ft)	
		DISC	HARGE, CU	BIC FEET I	PER SECOND,	WATER Y	EAR OCTOBE	R 1990 TO	SEPTEMBE	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR MAR	ALUES	MAY	JUN	JUL	AUG	SEP
1	578			e361	e395	e508	e990	3940	1430	667	722	622
2 3	578 596	522 522		e362 e365	e405 e415	e503 e497	e980 e960	2790 2300	1410 1320	668 654	69 6 695	607 618
4	636	522		e369	e430	e496	945	2020	1240	644	692	607
5	623	522		e370	e440	. e500	912	1890	1160	642	696	594
6 7	605 582	522 522		e375 e380	e455 e465	e500 e502	904 879	3010 4250	1100 1060	642 651	670 714	588 585
8	574	522		e385	e470	e515	874	2760	1030	690	1000	581
9	569	524	e451	e39 0	e470	e530	891	2460	997	692	2280	606
10 11	561 561	521 518		e395 e400	e470 e470	e553 e556	947 989	2380 2080	968 941	669 653	2620 1650	636 611
12	561	515		e405	e455	e591	948	1880	985	752	1290	640
13	556			e405	e445	e608	951	1750	961	847	1130	863
14 15	556 552			e405 e405	e435 e430	e614 e619	1030 1320	1630 1510	1110 1050	782 716	1040 977	974 1070
16	548			e405	e430	e623	1750	2150	1050	674	956	1040
17	543	509		e405	e430	e634	1540	2780	1070	652	950	895
18 19	543 543	512 511		e410 e405	e440 e445	e639 e700	1380 1360	3020 3170	1060 976	650 889	945 852	811 714
20	539			e400	e450	e1250	1680	3090	927	1050	749	654
21	539	515	e431	e390	e450	e1800	1840	2520	879	881	838	656
22 23	539 535			e380 e380	e450 e455	e2150 e2700	1590 1470	2230 2010	852 828	2650 1320	834 829	669 664
24	530	509		e380	e460	e3050	1390	1860	811	1160	824	643
25 26	526	509	e355	e380	e470	e2000	1310	1750	794	998	818	641
26 27	522 522			e380 e380	e480 e500	e1700 e1450	1220 1250	1620 1650	776 751	904 834	821 812	638 574
28	518	507		e380	e510	e1320	2070	1720	729	811	740	584
29	519	495	e358	e382		e1220	2710	1580	706	802	641	581
30	520	498		e385		e1120	3240	1460	689	789	638	578
31 TOTAL	522 17196			e390 12004	12620	e1020 31468	40320	1390 70650	29660	739 26172	622 29741	20544
MEAN	555	514	428	387	451	1015	1344	2279	9 89	844	959	685
MAX	636			410	510 3 9 5	3050	3240	4250	1430 689	2650 642	2620 622	1070
MIN AC-FT	518 34110	495 30590		361 23810	25030	496 62420	874 79970	1390 140100	58830	51910	58990	574 40750
CFSM	.44	.40	.34	.30	.35	. 80	1.06	1.79	.78	.66	. 76	.54
IN.	.50	.45	.39	.35	.37	.92	1.18	2.07	. 87	.77	. 87	. 60
MEAN	499	470	MEAN DATA 394	TOK WATER	R YEARS 1910 472	1393	, DI WALER 1117	790	, 855	756	606	546
MAX	1465	1494	1347	1152	1427	3512	4963	2440	2803	3252	1998	2105
(WY) MIN	1974 193	1983 218		1973 172	1966 168	1961 251	1965 274	1973 234	1974 261	1978 236	1953 231	1938 243
(WY)	1934	1934		1959	1959	1931	1931	1934	1934	1964	1958	1933
SUMMAR	Y STATIS				FOR 19	91 WATE					EARS 1910	
ANNUAL ANNUAL					31906 87					701		
	T ANNUAL	L MEAN			67	4				1541		1983
LOWEST	ANNUAL	MEAN								294		1931
	T DAILY DAILY I				425 35	0 !	May 7 Dec 25,26			31100 82		1 1952 28 1937
		DAY MINIM	UM		35		Dec 25			113	Dec 2	25 1933
		PEAK FLO			494		May 7			37000		1 1952
		PEAK STA			1	0.04	May 7			18.3 65b	2a Mar	2 1965
ANNUAL	RUNOFF	(AC-FT)			63290					507500		
	RUNOFF					.69				.5	5	
	CENT EX	(INCHES)			173	9.35 0				7.5 1210	10	
50 PER	CENT EXC	CEEDS			63	6				439		
90 PER	CENT EX	CEEDS			40	5				260		

a Backwater from ice. b Occurred Dec. 26, 1933 and Feb. 25, 1935.

e Estimated.

IOWA RIVER BASIN

05457000 CEDAR RIVER NEAR AUSTIN. MN

LOCATION.--Lat 43°38'11", long 92°58'26", in NE\set sec.15, T.102 N., R.18 W., Mower County, Hydrologic Unit 07080201, on left bank 200 ft upstream from abandoned powerhouse, 500 ft downstream from highway bridge, 1.1 mi downstream from Turtle Creek, and 1.1 mi south of Austin.

DRAINAGE AREA.--425 mi².

PERIOD OF RECORD.--May 1909 to September 1914, October 1944 to current year.

REVISED RECORDS.--WSP 1145: 1945, 1948.

GAGE.--Water-stage recorder. Datum of gage is 1,162.10 ft above National Geodetic Vertical Datum of 1929. May 1909 to April 1912, nonrecording gage in tailwater of powerplant 200 ft downstream at datum 3.1 ft lower. May 1912 to September 1914, nonrecording gage on highway bridge 500 ft downstream at datum 1.1 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,400 ft³/s and maximum (*):

Discharge

Discharge

Gage height

Gage height

Date Mar. 23 Apr. 15 Apr. 19 Apr. 27	Time 2230 0100 2000 1630	(scharge ft ³ /s) 3,000 1,560 1,480 1,790	Gage n (ft 8.8 6.1 6.0	2) 37 19 14		Date Apr. 30 May 6 May 18 Aug. 8	Time 0830 0630 2000 2400	(1 1 *4 3	t3/s) 1,600 1,640 3,000	(ft) 6.28 *11.52 8.87 11.24	nc
		DISCHARG	E, CUBIC	FEET PER		WATER Y MEAN V	EAR OCTOBER ALUES	R 1990 TO	SEPTEMBE	ER 1991		
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL ANNUAL	159 884 1974 37.3 1959 STATISTIC	NOV 96 99 102 99 97 91 99 97 91 99 90 80 82 93 94 88 87 89 89 85 80 82 80 82 80 81 82 80 81 82 84 85 86 86 87 89 80 81 81 82 83 84 85 86 87 88 88 88 88 88 88 88 88 88	DEC 87 76 976 976 812 693 885 885 865 778 812 693 865 883 885 865 966 866 866 866 966 966 966 966 966 966	JAN e63 e62 e661 e660 e660 e660 e665 e655 e655 e655 e655	DAILY FEB e56 e58 659 711 713 776 779 85 853 773 e72 e772 e776 e80 e81 86 83 2103 75 .18 866 4170 96.6 1188 ARS 169 701 1984 25.13	MEAN V MAR 91 104 109 127 222 215 218 187 175 196 241 233 249 281 338 527 623 2490 2220 1110 784 471 847 26 639 441 14718 475 2490 91 29190 1.29 - 1991 428 1973 53.3 53.3 53.6		MAY 1160 836 650 572 2040 4410 2560 1710 1550 1220 951 783 692 596 530 856 1210 2330 2500 1560 1110 867 714 634 575 765 1030 984 690 37891 1222 4410 530 75160 2.88 3.32 YEAR (WY) 21991 67.99 1910	SEPTEMBE JUN 6224 457 4068 3312 2261 383 343 2261 383 343 2261 383 343 2274 436 2274 208 1953 2274 159 159 159 169 169 169 169 169 169 169 169 169 16	JUL 160 160 144 128 123 143 124 114 110 133 257 301 213 169 148 139 402 321 230 283 352 433 298 221 185 164 159 146 134 6190 200 433 110 12280 .547 .54 221 1456 1978 22.6	AUG 122 116 110 108 107 166 2980 3740 1900 999 634 458 364 458 364 458 328 281 229 209 193 178 168 158 158 151 144 137 518 3740 107 31830 1.22 1.40 1.52 646 1953 32.3 1948 5ARS 1909	SEP 1118 1138 1134 1105 1105 1108 1200 1609 1511 1356 1105 1105 1105 1105 1105 1105 1105 11
LOWEST . HIGHEST LOWEST :	ANNUAL MEA DAILY MEA DAILY MEAN	N N		5460 42	Apr 24 Jan 7		4410 55	May 6 Jan 30,	31	58.1 8720 .00		1977 1962
INSTANT	SEVEN-DAY ANEOUS PEA ANEOUS PEA ANEOUS LOW	K FLOW K STAGE		45 7580 15.65 31	Jan 2 Apr 24 Apr 24 Feb 2,2	7	56 4640 11.52 45	Jan 26 May 6 2 Jul 6 Jan 20		13 12400 20.3	Sep 1 Jul 17 Sa Jul 17	1978
ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	RUNOFF (AC RUNOFF (CF RUNOFF (IN ENT EXCEED ENT EXCEED ENT EXCEED	CHES) SS		282600 .92 12.47 960 126			245700 .80 10.84 863 121 65)		154500 .50 6.82 427 85 43		
50 FERC	HII ENCEED	-		49			05			70		

a Median of annual mean discharges is 195 ft³/s.
 b Occurred for several days in 1911.
 c From floodmark in well.

Estimated

DES MOINES RIVER BASIN

05476000 DES MOINES RIVER AT JACKSON, MN

LOCATION.--Lat 43°37'10", long 94°59'10", in SE\SW\ sec.24, T.102 N., R.35 W., Jackson County, Hydrologic Unit 07100001, on right bapk in storage room of city powerplant in Jackson.

DRAINAGE AREA.--1,220 mi², approximately.

PERIOD OF RECORD.--May 1909 to December 1913, August 1930 to current year (winter record incomplete prior to 1936). Published as Des Moines River near Jackson, 1930-35, as West Fork Des Moines River near Jackson, 1936-44, and as West Fork Des Moines River at Jackson, 1945-69.

REVISED RECORDS.--WSP 1115: 1942. WSP 1175: Drainage area. WSP 1238: 1950. WSP 1308: 1938(M).

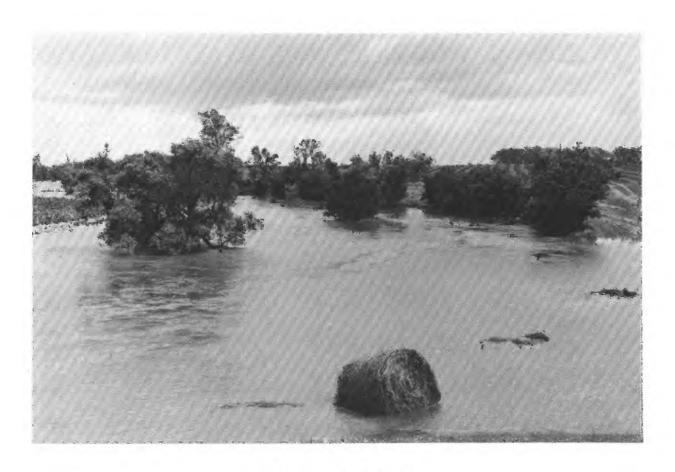
GAGE.--Water-stage recorder. Datum of gage is 1,287.75 ft above National Geodetic Vertical Datum of 1929.

May 31, 1909, to Dec. 20, 1913, nonrecording gage at site 0.6 mi downstream at datum 0.99 ft lower. Aug. 22, 1930, to Sept. 30, 1944, nonrecording gage at site 7 mi upstream at datum 17.10 ft higher. Oct. 1, 1944, to Oct. 26, 1949, nonrecording gage at site 500 ft upstream at datum 10.64 ft higher. Oct. 27, 1949, to Dec. 15, 1965, water-stage recorder 200 ft downstream at present datum.

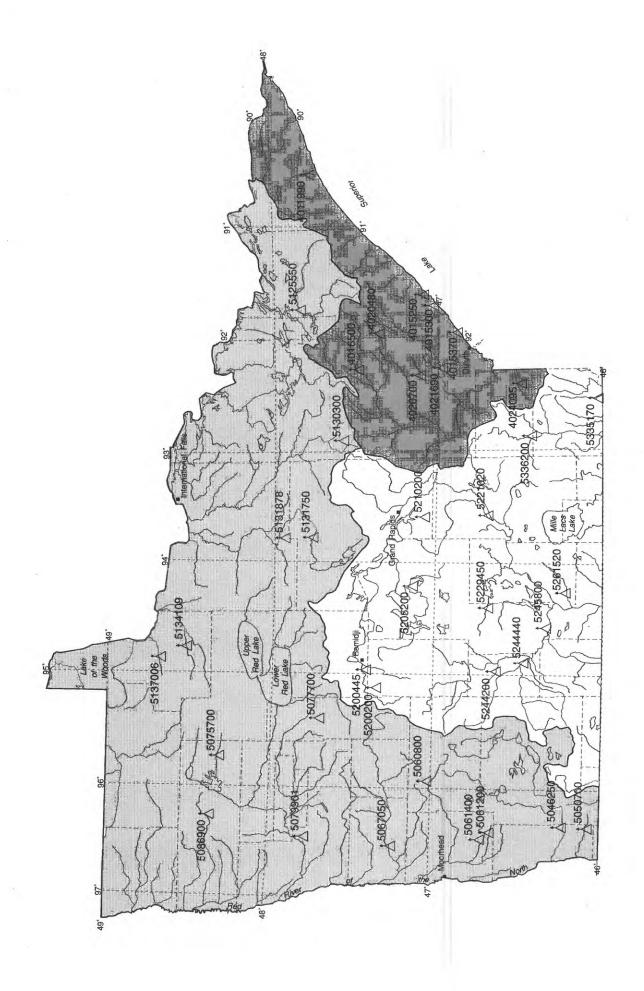
REMARKS.--Records good except those for estimated daily discharges, which are fair. Regulation at times by Yankton, Long, Shetek, and Heron Lakes.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 900 ft³/s and maximum (*):

e Estimated.


Date	T	Discine (fi	charge t ³ /s)	Gage heig	ht		Date	Time	Di (scharge (ft ³ /s)	Gage heigh (ft)	nt
May 21 June 10			,810 ,400	8.97 12.20		J	June 23	0400	*	3,470	*12.32	
		DISCHAR	GE, CUB	IC FEET PER		MEAN V	YEAR OCTOBER	1990 TO	SEPTEMBE	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	.82	7.8	23	1.0	1.1	12	271	604	e1200	1930	309	32
1 2 3	. 50	9.8	25	1.0	1.1	20	190	538	e1300	1750	308	29
3	10	8.5	23	.86	1.8	11	161	503	1460	1590	295	45
4	23	7.8	21	.93	8.1	11	144	640	1930	1450	281	43
5	19	8.9	23	.76	10	18	133	752	2050	1290	262	39
5 6 7	11	9.4	21	e1.0	11	22	124	693	2200	1180	245	42
8	7.0	7.9	19	e2.2	16	22	135	621	2410	1090	260	42
9	8.7 7.5	8.8	18 20	3.7	23 27	21	135 170	612 596	2880 3080	1000 921	251 195	41
10	5.4	67	23	1.4	21	21	149	579	3260	873	149	46
11	4.6	62	26	e1.4	16	24	121	565	3160	833	136	57
12	3.7	42	29	e1.4	11	32	166	547	3020	887	128	89
13	17	34	28	e1.5	11	20	503	535	2880	814	130	104
14	19	36	30	1.6	15	19	760	553	2830	714	120	278
15	12	40	26	1.8	6.1	23	838	800	2810	647	112	272
16	10	65	21	2.3	5.6	25	753	1070	2770	588	104	262
17	10	54	22	2.4	5.3	23	652	1430	e2600	537	117	231
18	4.8	46	19	3.7	7.1	34	590	1690	e2400	490	286	191
19 20	11 13	46 47	16 17	3.5	7.0	60	544 511	1720 1760	2170 2280	450 431	272 229	160 144
21	7.9	48	11	3.4 2.8	8.0 11	107	473	1780	3300	402	213	130
22	6.6	62	9.3	4.4	14	198	446	1760	3280	544	138	130
23	7.9	51	8.0	3.1	13	179	423	1630	3310	520	89	123
24	6.6	42	4.7	3.1	13	155	321	1450	3050	460	79	128
25	8.4	33	4.5	3.1	12	179	247	e1220	2980	404	68	118
26	8.4	30	3.6	e2.8	10	354	386	e1260	2890	362	63	122
27	8.9	25	3.2	e2.3	9.6	411	453	e1350	2730	351	58	125
28	11	15	3.3	e2.0	10	287	476	e1350	2700	399	46	107
29	17	20	3.6	e1.8		219	529	e1250	2560	383	41	108
30	10	21	2.6	e1.4		210	606	e1150	2170	360	39	108
31 TOTAL	7.4 298.12	994.9	1.2 505.0	e1.2 65.25	304.8	248 3155	11410	e1100 32108	77660	335 23985	36 5059	3389
MEAN	9.62	33.2	16.3	2.10	10.9	102	380	1036	2589	774	163	113
MAX	23	67	30	4.4	27	411	838	1780	3310	1930	309	278
MIN	. 50	7.8	1.2	.76	1.1	11	121	503	1200	335	36	29
AC-FT	591	1970	1000	129	605	6260	22630	63690	154000	47570	10030	6720
CFSM	.01	.03	.01	.00	.01	.08	.31	.85	2.12	.63	.13	.09
IN.	.01	.03	.02	.00	.01	.10	.35	.98	2.37	.73	.15	.10
							, BY WATER			400	100	4.50
MEAN MAX	140 1724	143 1833	81.6 792	38.6 298	57.2 504	2250	965 6045	544 2374	506 2843	403 2453	162 1408	152 2244
(WY)	1987	1980	1980	1980	1983	1983	1969	1984	1984	1983	1979	1942
MIN	.000	.000	.000	.000	.000	11.8	9.37	2.59	3.76	1.04	.13	.000
(WY)	1956	1956	1956	1956	1936	1959	1959	1934	1931	1931	1955	1931
	Y STATIS			1990 CALEN	DAR YEAR		FOR 1991 WA'				ARS 1930 -	
ANNUAL				22247.51			158934.07					
ANNUAL		742727		61.0			435			320a		-1225
	T ANNUAL									1199		1983
	ANNUAL P			£11	M 07		2210	7 02		15.1	A 1	1956
	T DAILY N			514	May 27		3310 .50	Jun 23 Oct 2		15500	Apr 11	1031
		AY MINIMUM		.00			.96			.00		1931
		PEAK FLOW		999	Jun 16		3470	Jun 23		15700	Apr 1	
		PEAK STAGE			Jun 16		12.32			19.45		1969
	TANEOUS I				Oct 2		.40			.00		
ANNUAL	RUNOFF	(AC-FT)		44130			315200			231800		
	RUNOFF			.05			.36			.26		
	RUNOFF			.68	3		4.85			3.56		
	CENT EXC			150			1510			863		
	CENT EXCI			33 1.5			62 3.5			66 2.4		
a Ma	dian of	annual mean	discha	rees is 240	f+3/e		3.5			2.4		
2 F	timated	modii	ar sould	-000 10 540	20 /5.							

Partial-Record Stations and Miscellaneous Sites



Roseau River November, 1928

High-Flow Partial-Record Stations

Hawk Creek near Maynard June 17, 1992

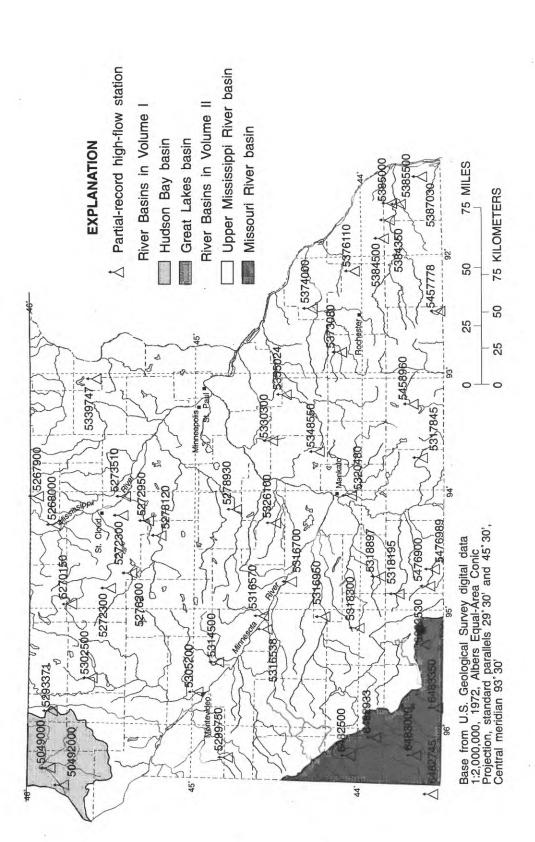


Figure 9.--Location of high-flow partial-record stations

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations or miscellaneous sites are presented in two tables. The first is a table of discharge at high-flow partial-record stations and the second is a table of discharge measurements made at miscellaneous sites for both low flow and high flow.

High-flow partial-record stations

The following table contains annual maximum discharge for high-flow stations. A high-flow partial-record station is equipped with a crest-stage gage, a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

			Water	year 1991	maximum	Period	of recor	d maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Mississipp	i River ma	in stem					•
Hennepin Creek near Becida, MN 05200200	Lat 47°23'52", long 95°05'12", in NWkNEk sec. 11, T.145 N., R.35 W., Hubbard County, Hydrologic Unit 07010101, at culvert on Stumphges Rapids Trail approximately 0.5 mile west of Hubbard County Road 3, 3 miles north of Becida, 1.5 miles upstream from mouth. Drainage area 41.4 mi ² .	1979-91	5-3-91	a11.78	41	5-11-85	15.25	375
Mississippi River at Bemidji, MN 05200445	Lat 46°27'04", long 94°54'23", in NWkNWk sec.20, T.146 N., R.33 W., Beltrami County, Hydro- logic Unit 07010101, at bridge on County Highway 11, 1.4 miles south west of intersection of U.S. Highway 2 and County Highway 7 in Bemidji. Drainage area 400 mi		5-9-91	b11.24	330	4-23-79	13.04	1,690
	Leech La	ke River b	asin					
Boy River near Remer, MN 05205200	Lat 47°04'51", long 94°05'54", in SE\SE\sec.28 T.142 N., R.27 W., Cass County, Hydro- logic Unit 07010102, at bridge on County Highway 53, 1.9 miles up- stream from Boy Lake and 9 miles northwest of Remer. Drainage area 310 mi ² .	1986-91	7-12-91	b10.4	340	7-23-87	11.64	660
	Smith	Creek basi	.n					
Smith Creek near Hill City, MN 05210200	Lat 47°04'58", long 93°34'59", in SEkNWk sec.13, T.53 N., R.26 W., Itasca County, Hydrologic Unit 07010101, at culvert on U.S. Highway 169, 6.2 miles north of Hill City. Drainage area 8.00 mi ² .	1961-91	10-3-90	4.59	51	8-5-81	7.95	445

[&]quot;See footnotes at end of the table."

			Water	year 1991	Period of record maximum			
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Willo	w River bas	sin					
Willow River below Palisade, MN 05221020	Lat 46°42'36", long 93°33'21", in NW\(\frac{NW\(\frac{N}{2}\)}{NE\(\frac{N}{2}\)} sec.30, T.49 N., R.25 W., Aitkin County, Hydrologic Unit 07010103, at bridge on County Highway 3, 3.2 miles west of Palisade. Drainage area 445 mi ² .	1972-91	5-7-91	11.80	1,180	4-25-79	17.25	3,730
	Pine	River basi	in					
Pine River near Pine River, MN 05229450	Lat 46°41'39", long 94°22'11", in NE\SE\ sec.8., T.137 N., R.29 W., Cass County, Hydro- logic Unit 07010105, at bridge 2.3 miles southeast of Pine Rive on U.S. Highway 371, 4.9 miles u stream of upper Whitefish Lake. Drainage area 285 mi ² .		5-8-91	C3.11	431	3-28-86	4.35	1,150
	Crow W.	ing River b	asin					
Cat River near Nimrod, MN 05244200	Lat 46°37'49", long 94°55'51", in SW\SW\k sec.36, T.137 N., R.34 W., Wadena County, Hydro- logic Unit 07010106, at bridge on State Highway 227, 2.5 miles west of Nimrod, 3.0 miles upstream from mouth. Drainage area 49.2 mi ² .	1961-91	7-1-91	ab5.52	92	10-12-73	9.43	560
Leaf River near Aldrich, MN 05244440	Lat 46°27'25", long 94°50'29", in SW\sW\s sec.34, T.135 N., R.33 W., Wadena County, Hydrologic Unit 07010107, at bridge on County Highway 29, 3.3 miles upstream from mouth, 7.0 miles northeast of Aldrich. Drainage area 860 mi ² .	1972-91	4-16-91	11.45	1030	4-22-79	16.15	5,170
Sevenmile Creek near Pillager, MN 05245800	Lat 46°20'32", long 94°32'56", in SW\SE\chi sec.11, T.133 N., R.31 W., Cass County, Hydrologic Unit 07010106, at bridge on township road, 3.5 miles nort west of Pillager, 3.2 miles upstream from mouth. Drainage area 18.3 mi ² .	1979-91 h-	6-30-91	11.81	80	6-14-83	13.08	285
	Nokasi	ppi River b	asin					
Nokasippi River near Fort Ripley, MN 05261520	Lat 46°12'02", long 94°19'03" on line between secs.13 and 24, T.43 N., R.32 W., Crow Wing County, Hydrologic Unit 07010104, at bridge on County Highway 2, 3 miles northeast of Fort Ripley. Drainage area 178 mi ² .		6-30-91	10.54	357	4-4-86	13.90	828
	Platt	e River ba	sin					
Hillman Creek near Pierz, 05267900	Lat 45°58'27", long 94°04'21", in NE\SE\x sec.9, T.40 N., R.30 W., Morrison County, Hydrologic Unit 07010201, at bridge on county highway, 1.1 miles upstream from mouth, 1.5 miles east of Pierz. Drainage area 46.7 mi ² .	1964-91	5-1-91	13.70	490	4-9-69	15.48	2,960

[&]quot;See footnotes at end of the table."

			Water	year 1991	maximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Platte Rive	er basinCo	ontinued					
Platte River above Royalton, MN 05266000	Lat 45°50'43", long 94°17'40", in SEŁNWk sec 26, T.39 N., R.32 W., Morrison County, Hydro- logic Unit 07010201, at bridge on County Highway 27, 0.6 mile north of Royalton, 6.6 miles up- stream from mouth. Drainage area 335 mi ² .	1929-36, 1972-91	4-16-91	12.47	2,150	7-26-72	7.84	6,850
	Sauk	River basi	n					
Ashley Creek near Sauk Centre, MN 05270150	Lat 45°46'46", long 94°58'52", in NW\sE\ sec.29, T.127 N., R.34 W., Todd County, Hydro- logic Unit 07010202, at bridge on County Highway 11, 3 miles north of Sauk Centre. Drainage area 113 mi ² .	1963-70+, 1974+, 1976+, 1986-88, 1989# 1990-91	9-9-91	14.88	342	9-25-86	16.52	600
Sauk River tributary at Spring Hill, MN 05270300	Lat 45°31'22", long 94°48'31", in SWaNE's sec.27, T.124 N., R.33 W., Stearns County, Hydro- logic Unit 07010202, at cul- vert on State Highway 4, 1.0 mile east of Spring Hill, 2.7 miles upstream from mouth. Drainage area 7.06 mi ² .	1960-91	9-9-91	ъ10.67	152	7-6-78	22.76	1,440
	Johnso	on Creek bas	sin					
Johnson Creek near St. Augusta, MN 05272300	Lat 45°27'49", long 94°09'19", in NW4SW4 sec.13, T.123 N., R.28 W., Stearns County, Hydrologic Unit 07010203, at bridge on County Highway 7, 1.0 mile south of St. Augusta, 3.3 miles upstream from mouth. Drainage area 46.7 mi ² .	1964-91	9-8-91	12.80	255	9-9-85	16.37	2,350
	Clearwa	ter River b	asin					•
Clearwater River near South Haven, MN 05272950	Lat 45°16'45", long 94°15'04", in NE\hat{NE\hat{k}} sec.19, T.121 N., R.28 W., Wright County, Hydrologic Unit 07010203, at culvert 3.4 miles southeast of Kimball, 0.25 mile downstream of Scott Lake Outlet, 2.0 miles southeast of South Haven. Drainage area -	1985-91 oi River mai	9-16-91 .n stem	14.76	236	9-9-85	17.11	1,040
Mississinni	Lat 45°25'15", long 94°02'37",			0012 25	18 300	4-24-70	18 75	33 000
Mississippi River at Clearwater, MN 05273510	in NWkSWk sec.23, T.34 N., R.30 W., Sherburne County, Hydro- logic Unit 07010203, on left bank 700 ft upstream from bridge, on State Highway 24 at Clearwater. Drainage area		5-10-91 1	JU 12.03	18,300	4-24-79	10./3	33,900
		River basis						
North Fork Crow River at Paynesville, MN 05276200	Lat 45°23'09", long 94°42'41", in SWASEA sec.9, T.122 N., R.32 W., Stearns County, Hydrologic Unit 07010204, at bridge on county road at northeast edge of Paynesville city limits. Drainage area 236 mi ² .	1973-91	5-29-91	a4.43	c620	6-21-83	9.29	2,300

[&]quot;See footnotes at end of the table."

			Water	year 199	1 maximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Crow River	basinCo	ntinued					
North Fork Crow River near Kingston, MN 05278120	Lat 45°12'13", long 94°23'16", in SWkSEk sec 13, T.120 N., R.30 W., Meeker County, Hydro- logic Unit 07010204, at bridge on State Highway 24, 3.7 miles west of Kingston, 3.9 miles east of Forest City. Drainage area	1986-91	9-16-91	15.70	2,750	5-1-86	17.82	4,850
Buffalo Creek near Glencoe, MN 05278930	Lat 44°45′50", long 94°05′27", in SW\sW\sec. 16, T.115 N., R.27 W., McLeod County, Hydrologic Unit 07010205, on right bank, 20 ft (6 m) downstream from bridge on County Highway 1, 2.6 mi (4.2 km) east of Glencoe. Drainage area 374 mi ² .	1972 1973-80#	9-12-91	11.78	4,300	9-12-91	11.78	4,300
	Minnes	ota River 1	basin					
Pomme de terre River near Elbow Lake, MN 05293371	Lat 46°57'47", long 95°53'07", in SE\SW\ sec.19, T.129 N., R.41 W., Grant County, Hydro- logic Unit 07020002, at bridge on County Road 47, 4 miles south- east of Elbow Lake, 2.5 miles south of the outlet of Pomme de Terre Lake. Drainage area 340 mi².	1986-91	7-2-91	4.54	195	4-6-69	d	e200
Florida Creek near Burr, MN 05299750	Lat 44°49'00", long 96°25'10", in SE\SE\s sec. 29, T.115 N., R.46 W., Yellow Medicine County, Hydrologic Unit 07020003, at culvert on County Road 15, 2.2 miles west of Burr, 6 miles northwest of Canby. Drainage area 50 mi ² .	1982 1983-84#	6-6-91	14.47	81	3-29-84	18.38	471
Little Chippewa River near Starbuck, MN 05302500	Lat 45°36'52", long 95°37'12", in NW\xNE\x sec.30, T.125 N., R.39 W., Pope County, Hydrologic Unit 07020005, at culvert on State Highway 28, 4.4 miles west of Starbuck. Drainage area 69.6 mi ² .	1979-91	6-30-91	c12.54	178	6-30-91	c12.54	178
Spring Creek near Montevideo, MN 05305200	Lat 44°58'41", long 95°42'57", in NWkNWk sec.5, T.117 N., R.40 W., Chippewa County, Hydrologic Unit 07020005, at culvert on State Highway 29, 1.2 miles upstream from mouth, 2.0 miles north of Montevideo. Drainage area 16.0 mi ² .	1959-91	7-21-91	18.00	470	7-19-62	18.22	492
Hawk Creek near Maynard, MN 05314500	Lat 44°52'10", long 95°26'58", in SWkNWk sec.7, T.116 N., R.38 W., at Renville and Chippewa County line, Hydrologic Unit 07020004, at bridge on State High way 23, 3.0 miles southwest of Maynard. Drainage area 474 mi ² .	1949-54 #, 1981-91 -	9-9-91	15.96	1,540	6-18-57	16.10	6,970
Ramsey Creek near Redwood Falls, MN 05316538	Lat 44°33'08", long 95°10'38" in SE\nE\ sec. 33, T.113 N., R.36 W., Redwood County, Hydro- logic Unit 07020006 at bridge on township road 2.3 miles northwest of KLGR radio towers, on west side of Redwood Falls. Drainage area	1991	6-4-91	24.69	755	6-4-91	24.69	755

[&]quot;See footnotes at end of the table."

			Water	year 1991	maximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Minnesota Riv	ver basin-	-Continued					
Beaver Creek at Beaver Falls, MN 05316570	Lat 44°35'03", long 95°02'49", in NE\n\w\ sec.22, T.113 \n., R.35 \w., Renville County, Hydrologic Unit 07020004, at bridge on County Highway 2 in Beaver Falls, 2.2 miles upstream from mouth, 3.8 miles northwest of Morton. Drainage area 194 mi ² .	1972-91	9-8-91	a11.80	965	4-23-85	a11.33	1,070
Spring Creek near Sleepy Eye, MN 05316700	Lat 44°24'12", long 94°44'41", in NE\SE\ sec.24, T.111 N., R.33 W., Brown County, Hydrologic Unit 07020007, at culvert on county highway, 4.3 miles upstream from mouth, 7.5 miles north of Sleepy Eye. Drainage area 31.3 mi ² .	1959-91	6-22-91	14.54	510	4-10-65	17.79	930
Cottonwood River near Springfield, MN 05316950	Lat 44°12'12", long 95°02'53", on line between secs.33 and 34, T.109 N., R.35 W., Brown County, Hydrologic Unit 07020008, at bridge on County Highway 2, 1.3 miles downstream from Mound Creek, 1.0 mile upstream from Coal Mine Creek, 3.5 miles southwest of Springfield. Drainage area 773 mi ² .	1973-91	6-21-91	a23.72	3,400	6-25-84	29.12	8,500
East Branch Blue Earth River near Walters, MN 05317845	Lat 43°37'58", long 93°42'28", in SE\SE\sec.16, T.102 N., R.24 W., Faribault County, Hydrologic Unit 07020009, at culvert on State Highway 22, 2.5 miles northwest of Walters. Drainage area 29.6 mi ² .	1979-91	6-1-91	17.87	500	4-28-81 6-1-91	18.17 17.87	500 500
Elm Creek near Trimont, MN 05318195	Lat 43°45'27", long 94°50'30", in NWkNWk sec. 5, T. 103 N., R. 33 W., Martin County, Hydrologic Unit 07020009, at bridge on County Road 103, 12.5 miles northeast of Jackson, 5 miles west Trimont. Drainage area	1991	6-4-91	21.92	2,000	6-4-91	21.92	2,000
+Watonwan River near Delft, MN 05318300	Lat 43°59'55", long 95°07'11", in NE\SE\ sec.11, T.106 N., R.36 W., Cottonwood County, Hydrologic Unit 07020010, at culvert on U.S. Highway 71, 1.7 miles northwest of Delft. Drainage area 13.0 mi ² .	1960-91	6-21-91	17.10	665	5-30-80	17.82	900
South Fork Watonwan River near Ormsby, MN 05318897	Lat 43°53'08", long 94°41'27", in SE\nw\ sec.21, T.105 N., R.32 W., Watonwan County, Hydro- logic Unit 07020010, at bridge on township road, 2.6 miles north of Ormsby, 5.0 miles up- stream from Willow Creek. Drainage area 109 mi ² .	1979-91	6-15-91	14.42	638	5-31-80	18.40	1,410
Maple River near Rapidan, MN 05320480	Lat 44°03′54", long 94°01′32", in SWk sec.13, T.107 N., R.27 W., Blue Earth County, Hydrologic Unit 07020011, at bridge on County Highway 35, 3.0 miles southeast of Rapidan, 3.3 miles upstream from mouth. Drainage area 343 mi ² .	1972-91	6-5-91	12.05	3,520	3-1-83	12.73	4,550

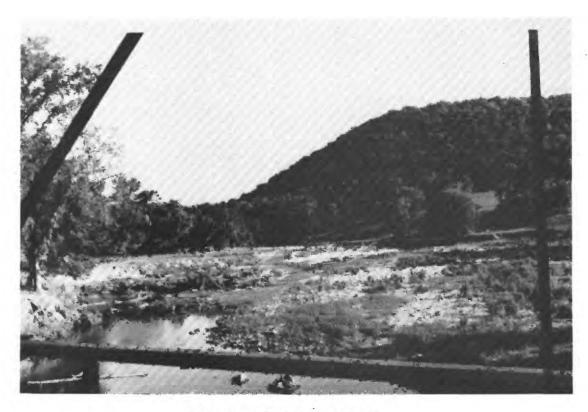
[&]quot;See footnotes at end of the table."

			Water	year 1991	maximum	Period	of recor	d maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Minnesota Ri	ver basin	Continued					
Middle Branch Rush River near Gaylord, MN 05326100	Lat 44°30'27", long 94°15'00", in SWkNWk sec.18, T.112 N., on line between R.28 W. and R.29 W., Sibley County, Hydrologic Unit 07020012, at bridge on township road, 3.0 miles southwest of Gaylord, 10.5 miles upstream from the main branch of Rush River. Drainage area 68.5 mi ² .	1979-91	9-14-91	15.19	565	6-30-83	9.78	920
Sand Creek near New Prague, MN 05330300	Lat 44°32'37", long 93°32'16", in NE\nW\ sec.1, T.112 N., R.23 W., Le Sueur County, Hydro- logic Unit 07020012, at culvert on State Highway 13 and 19, 1.9 miles east of New Prague. Drainage area 62.4 mi ² .	1960-91	5-6-91	10.94	310	5-21-60	14.84	1,100
	St. Cro	ix River b	asin					
Crooked Creek near Hinckley, MN 05335170	Lat 46°00'42", long 92°31'45", in NE\nE\s sec.30, T.41 N., R.17 W., Pine County, Hydrologic Unit 07030001, at culvert on State Highway 48, 2.7 miles up stream from mouth, 8 miles south of Duxbury, 19 miles east of Hinckley. Drainage area 93 mi ² .	1966-70+, 1974-76+, 1979-80+, 1986-91	5-5-91	13.60	890	5-28-89	15.52	1,630
Glaisby Brook near Kettle River, MN 05336200	Lat 46°27'19", long 92°51'34", in SE\nw\x sec.22, T.46 N., R.20 W., Carlton County, Hydrologic Unit 07030003, at bridge on State Highways 27 and 73, 1.0 mil upstream from mouth, 2.4 miles south of Kettle River, Drainage area 27.5 mi ² .		5-6-91	a5.49	330	7-22-72	10.18	1,370
Goose Creek at Harris, MN 05339747	Lat 45°35'11", long 92°58'39", in SWkSWk sec.21, T.36 N., R.21 W., Chisago County, Hydrologic Unit 07030005, at culverts on County Highway 9, 0.15 mile east of County Highway 30 in Harris, 8 miles above mouth. Drainage area f60 mi ² .	1986-91	5-5-91	7.40	286	5-5-91	7.40	235
	Canno	River bas	in					
Cannon River below Sabre Lake near Kilkenny, MN 05348550	Lat 44°17'50", long 93°37'44", in NE\nE\sec. 31, T.110 N., R.23 W., LeSueur County, Hydro- logic Unit 07040002, at bridge on township road, 0.25 mile downstream of Sabre Lake, 3 mile southeast of Kilkenny. Drainage area	1985-91 s	8-8-91	13.73	480	8-8-91	13.73	480
Cannon River at Northfield, MN 05355024	Lat 44°27'19", long 93°09'46", in NE\nE\sec.1, T.111 N., R.20 W., Rice County, Hydro- logic Unit 07040002, at Fifth Street bridge in North- field. Drainage area 934 mi ² .	1980-91	8-10-91	904.23	5,500	7-28-90	904.87	7,150

^{. &}quot;See footnotes at end of the table."

			Water	year 1991	maximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Zumb	o River bas	in					
Milliken Creek near Concord, MN 05373080	Lat 44°07'13", long 92°49'08", in NWkNWk sec.36, T.108 N., R.17 W., Dodge County, Hydrologic Unit 07040004, at bridge on County Road 9, 8.0 miles upstream from mouth, 2.1 miles southeast of Concord. Drainage area 22.2 mi ² .	1979-91	8-8-91	13.57	425	5-31-82	14.50	580
Zumbro River at Zumbro Falls, MN 05374000	Lat 44°17'12", long 92°25'56", in sec.36, T.110 N., R.14 W., Wabasha County, Hydrologic Unit 07040004, on left bank in Zumbro Falls, 1,000 ft downstsream from Cold Creek, 0.7 mi upstream from bridge on U.S. Highway 63, and 6.3 mi downstream from North For Drainage area f1,130 mi ² .		5-6-91	13.66	7,000	7-21-51	30.80	35,900
	Whitewa	ter River b	asin					
Middle Fork Whitewater River neaer State Park Group Camp near St. Charles, MN 05376110	Lat 03'21", long 92 03'13", in SWk sec. 20, T.107 N., R.10 W., Olmsted County, Hydro- logic Unit 07040003, at wooden bridge near Group Camp in Whitewater State Park. Drainage area	1986-91	7-22-91	65.50	t	4-24-90	67.39	†
	Root	River basi	n					
Root River near Lanesboro, MN 05384000	Lat 43°44′58", long 91°58′43", in sec. 1, T. 103 N., R. 10 W, Fillmore County, Hydrologic Unit 07040008, on left bank 0.5 mi upstream from highway bridge, 1.2 mi upstream from South Branch, and 2.5 mi northeast of Lanesboro, Drainage area615 mi ² .	1910-17# 1940-85# 1986 1987-90# 1991	5-6-91	6.07	3,230	3-29-62	16.11	22,100
Root River at Rushford, MN 05384350	Lat 43°48'11", long 91°45'10", in NE\nE\sec.23, T.104 N., R.8 W., Fillmore County, Hydro- logic Unit 07040008, at U.S. Highway 16 bridge on south side of Rushford. Drainage area	1985-91	5-6-91	g<23.93	e4,500	4-25-90	-	9,000
Rush Creek near Rushford, MN 05384500	Lat 43°50'00", long 91°46'40", on line between secs.3 and 10, T. 104 N., R.8 W., Fillmore County, Hydrologic Unit 07040008, at bridge, 1.5 miles northwest of Rushford, 3.0 miles upstream from mouth. Drainage area 129 mi ² .	1942-79#, 1980-91	7-21-91	7.81	3,480	3-26-50	13.54	11,600
South Fork Root River near Houston, MN 05385500	Lat 43°44'19", long 91°33'50", in NE\sW\x sec.9, T.103 N., R.6 W., Houston County, Hydrologic Unit 07040008, on left bank, 50 feet downstream from State Highway 76 bridge, 0.5 mile upstream from Badger Creek, 1.5 mile south of Houston. Drainage area 275 mi2.	1953-83#, 1985-91	4-29-91	6.72	815	6-21-74	13.81	11,000

[&]quot;See footnotes at end of the table.


			Water	year 1991	maximum	Period	of recor	d maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Crooke	d Creek ba	asin					
Crooked Creek at Freeburg, MN 05387030	Lat 43°36'37", long 91°21'39", in SWkNEk sec.30, T.102 N., R.4 W., Houston County, Hydro- logic Unit 07060001, at bridge on State Highway 249 at Freeburg, 6.5 miles upstream from mouth. Drainage area 44.2 mi ² .	1979-91	8-7-91	8 .	e100	6-17-84	15.66	1,430
	Iowa	River bas	in					
Little Cedar River near Johnsburg, MN 05457778	Lat 43°30'52", long 92°45'19", in NWkNEk sec.33, T.101 N., R.16 W., Mower County, Hydro- logic Unit 07080201, at bridge on County Road 6, 1 mile north- east of Johnsburg, 1 mile north Minnesota-Iowa border. Drainage area 46 mi ² .	1986-91	8-8-91	14.11	t	9-9-86	14.66	t
Bancroft Creek at Bancroft, MN 05458960	Lat 43°42'09", long 93°21'23", in SW\SE\sec.21, T.103 N., R.21 W., Freeborn County, Hydro- logic Unit 07080202, at bridge on County Road 14, 1.6 miles nort east of Fountain Lake, 1 mile nor of Interstate 90. Drainage area mi ² .	th	5-6-91	5.76	250	3-23-89	6.96	475
	Des Moi:	nes River	basin					
Fourmile Creek near Dunnell, MN 05476900	Lat 43°34'57", long 94°46'26", in SWkNWk sec.2, T.101 N., R.33 W., Martin County, Hydrologic Unit 07100003, at bridge on State Highway 4, 0.6 mile upstream from mouth, 1.6 miles north of Dunnell. Drainage area 14.0 mi ² .	1960-91	6-4-91	a14.54	400	7-4-62	16.15	2,200
East Fork Des Moines River near Ceylon, MN 05476989	Lat 43°33'53", long 94°39'15", in NWkSWk sec.11, T.101 N., R.32 W., Martin County, Hydro- logic Unit 07010003, at bridge on County Road 23, 2.4 miles northwest of Ceylon. Drainage area 154 mi ² .	1986-91	6-5-91	21.18	1,100	6-5-91	21.18	1,100
	Big	Sioux Rive	er basin					
Pipestone Creek near Pipestone, MN 05482500	Lat 44°04'54", long 96°18'27", in SEkSEk sec. 12, T. 107 N., R. 46 W., Pipestone County, Hydrologic Unit 10170203, at bridge on Trunk Highway 75, 5.5 miles north of Pipestone. Drainage area	1991	6-22-91	17.50	t	6-22-91	17.50	. †
Beaver Creek at Valley Springs, S.D. 05482745	Lat 43°35'10", long 96°28'20", in NWkNWk sec. 3, T.101 N., R.47 W., Minnehaha County, South Dakota Hydrologic Unit 10170203, at bridge on County Road 103 (Valley Drive), 1 mile west of South Dakota-Minnesota border, 2.5 miles south of Interstate 90. Drainage area 104 mi.	1986-91	6-4-91	a16.47	220	9-24-86	22.07	1,060

[&]quot;See footnotes at end of the table."

			Water	year 1991	. maximum	Period	of recor	d maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Big Sioux Riv	ver basin	Continued					
Chanarambi Creek near Edgerton, MN 06482933	Lat 43°53'59", long 96°03'39", in NW _X SW _X sec.18, T.105 N., R.43 W., near Murray and Pipestone County line, Hydrologic Unit 10170204, at bridge on township road, 3.8 miles northeast of Edgerton, 7.4 miles upstream from mouth. Drainage area 56.1 mi ² .	1979-91	3-19-91	10.62	62	9-19-86	18.09	580
Rock River at Luverne, MN 06483000	Lat 43°39'15", long 96°12'03", in SWaNE's sec. 11, T.102 N., R.45 W., Rock County, Hydro- logic Unit 10170204, at bridge on Main Street (County Highway 4) in Luverne. Drainage area 425 mi ² .	1911-14#, 1972-91	6-6-91°	8	e300	6-13-14	13.20	11,600
Little Rock River near Rushmore, MN 06483350	Lat 43°32'36", long 95°48'58" in NE\x sec. 24, T. 101 N, R. 42 W., Nobles County, Hydrologic Unit 10170204, at bridge #4967, on County Road 6, 1.5 miles west of Ransom, 5.1 miles south of Rushmore. Drainage area	1991	6-6-91	. 24.67	380	6-6-91	24.67	380
	Little Si	loux River	basin					
Little Sioux River near Spafford, MN 06603530	Lat 43°36'08", long 95°15'27", in NEkNEk sec.34, T.102 N., R.37 W., Jackson County, Hydro- logic Unit 10230003, at bridge on county highway, 1.6 miles downstream from Jackson County ditch No. 11, 5.8 miles east of Spafford. Drainage area 41.1 mi	1962-91 2 _.	6-22-91	a9.82	600	6-29-69	12.06	4.500

< Less than, peak stage unknown, discharge estimated.
+ Operated as low flow site.
Operated as a continuous-record gaging station.
† Discharge not determined.
a Backwater from acquatic growth or debris.
b Not annual maximum gage height.
c Affected by shifting control.
d Peak stage unknown.
e Discharge estimated.
f Approximately.
g Peak stage did not reach bottom of pipe.
h At datum then in use, 5.84 ft higher.</pre>

Miscellaneous Sites

Rush Creek near Rushford August 14, 1962

Discharge measurements at miscellaneous sites

Measurements of streamflow at points other than gaging stations are given in the following table. The measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†).

Discharge measurements made at miscellaneous sites during water year 1991

Streem	Tributary	Location	Drainage area (mi ²)	Period of record	Date	Discharge (ft ³ /s)
*		Mississippi River main stem				
Mississippi River	Gulf of Mexico	Lat 47°27'01", long 94°28'40", in SWkNWk sec.22, T.146 N. R.30 W., Beltrami County, Hydrologic Unit 07010101, 1000 feet below Knutson Dam at outlet to Cass Lake, 2.2 miles South of Pennington.	-	1991	2-26-91	230
Mississippi River	Gulf of Mexico	Lat 47°25'29", long 94°21'13", in NE\nE\sec.33, T.146 N., R.29 W., on Itasca/Cass County line, Hydrologic Unit 07010101, at Becker Resort boat landing, 1 mile above Lake Winnibigoshish.	121	1991	2-26-91	294
Mississippi River	Gulf of Mexico	Lat 47°25'42", long 94°03'00", in SWk sec.25, T.146 N., R.27 W., Itasca County, Hydrologic Unit 07010101, on Leech Lake Indian Reservation, at dam 1 mile northwest of Little Winnibigoshish Lake, 14 miles northwest of city of Deer River, at mile 1,248 upstream from Ohio River (05201500).	1,442	#1884-91	2-26-91	233
Mississippi River	Gulf of Mexico	Lat 47°19'29", long 93°57'33", in NE\nw\ sec.3, T.144 N., R.26 W., Cass County, Hydrologic Unit 07010101 at bridge on Trunk Highway 2, 1 mile west of Ball Club.	(4)	1990-91	2-27-91	269
		Leech Lake River basin				
Boy River	Leech Lake River	Lat 47°04'51", long 94°05'54", in SE\SE\ sec.28 T.142 N., R.27 W., Cass County, Hydrologic Unit 07010102, at bridge on County Highway 53, 1.9 miles upstream from Boy Lake and 9 miles northwest of Remer (05205200).	310	+1986-91	2-25-91	58
Boy River	Leech Lake River	Lat 47°09'56", long 94°10'41", in NWkNWk sec.36, T.143 N., R.28 W., Cass County, Hydrologic Unit 07010102, at bridge on County Road 8, 2.3 miles upstream of Leech Lake (Boy Bay), 6 miles south of Federal Dam.	-	1990-91	1-17-90	69
Leech Lake River	Mississippi River	Lat 47°14'45", long 94°13'12", in sec.34, T.144 N., R.28 W., Cass County, Hydrologic Unit 07010102, on Leech Lake Indian Reservation, on right bank at dam on Leech Lake River at city of Federal Dam, 2 miles downstream from natural outlet of Leech Lake (05206500).	1,163	#1984-91	2-28-91	99
Leech Lake River	Mississippi River	Lat 47°49'22", long 93°54'50", in SE\NW\x sec.13, T.144 N., R.26 W., Cass County, Hydrologic Unit 07010101, in river 2.5 miles downstream of Mud Lake Dam, 2.5 miles southeast of Ball Club.	**	1991	2-28-91	106

[&]quot;See footnotes at end of the table."

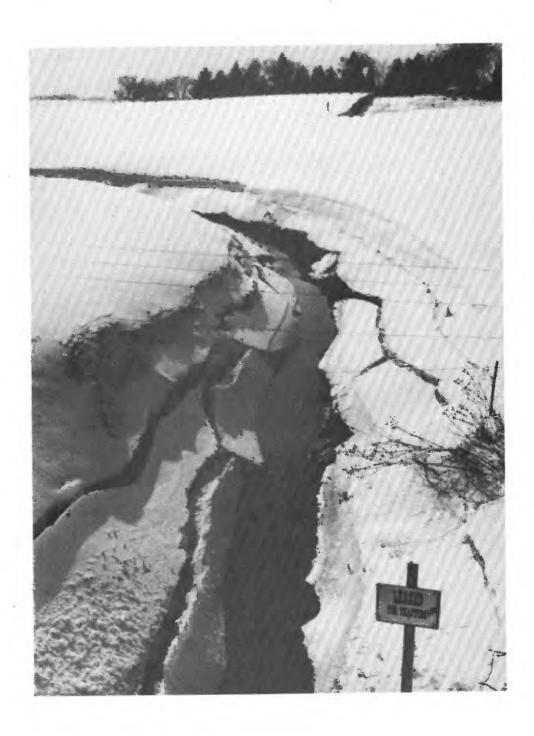
Stream	Tributary	Location	Drainage area (mi ²)	Period of record	Date	Discharge (ft ³ /s)
		Mississippi River main stem				
Mississippi River	Gulf of Mexico	Lat 47°18'08", long 93°54'04", in NWASWA sec.7, T.144 N., R.25 W., Cass County, Hydrologic Unit 07010102, at bridge on County Road 3, 2 miles southeast of Ball Club (05207600).	-	1945-48, 1957, 1990-91	2-27-91	401
Mississippi River	Gulf of Mexico	Lat 47 °15'10", long 93°48'00", in NELNWk sec.35, T.144 N., R.25 W., Itasca County, Hydrologic Unit 07010101, at bridge on County Road 18, at Days High Landing, 5.6 miles south of Deer River. (05210000).	a 3,190	1945-50, #b1979-91	2-28-91	373
		Crow River basin				
Fountain Creek	North Fork Crow River	Lat 45°01'20", long 93°56'29", in NE\hat{NE}\	6.73	1962-85, 1991	9-7-91	202
Otter Creek tributary	South Fork Crow River	Lat 44°53'34", long 94°04'24", in SEkSEk sec. 33, T. 117 N., R. 27 W., McLeod County, Hydrologic Unit 07010205, at culvert on County Highway 63, 1.7 miles northwest of Lester Prairie, 3.3 miles upstream from mouth (05278750).	1.54	+1962-86, 1991	9-8-91	† 58
Buffalo Creek tributary	South Fork Crow River	Lat 44°45'55", long 94°22'33", in NE\sE\ sec. 13, T. 115 N., R. 30 W., McLeod County, Hydrologic Unit 07010205, at culvert on State Highway 15, 0.6 mile above mouth, and 2.6 miles northwest of Brownton (05278850).	9.45	+1961-87, 1991	9-8 -91	†175
South Fork Crow River	Crow River	Lat 44°54'20", long 93°53'05", in SWkSWk sec. 30, T. 117 N., R. 25 W., Carver County, Hydrologic Unit 07010205, near center of span on downstream side of bridge on State Highway 7, 1.3 miles north of Mayer, 4.3 miles southwest of Watertown, 16 miles upstream from confluence with North Fork (05279000).	1,170	#1934-79, +1980-84, +1986, 1991	9-13-91	†67 6 0
Mississippi River	Gulf of Mexico	Lat 44°58'46", long 93°14'50 ", in SELSEL sec.23, T.29 N., R.24 W., Hennepin County, Hydrologic Unit 07010206, at lower St. Anthony Falls lock and dam in Minneapolis at River Mile 853.3 upstream from Ohio River. (Discharge measurements made between Hennepin Avenue and Franklin Avenue bridges over the Mississippi River are included). (05288920).	a19,700	1912, 1938-39, 1941, 1943, 1953-54, 1957, 1963-85, 1990-91	4-26-91 8-8-91	†15,700 9,040
		Minnesota River basin				
Chippewa River	Minnesota River	Lat 44°56'53", long 95°43'50", in NE\sE\sec.18, T.117 N., R.40 W., Chippewa County, Hydrologic Unit 07020005, at bridge on State Highway 7, at Montevideo (05305400).	-	1990-91	6-22-91	857
Chippewa River below diversion	Minnesota River	Lat 45°01'10", long 95°47'30", in NWk sec.22, T.118 N., R.41 W., Chippewa County, Hydrologic Unit 07020005, 1.4 miles northeast of Watson.	-	1945-91	11-7-90	*19

[&]quot;See footnotes at end of the table."

Stream	Tributary	Location	Drainage are a (mi ²)	Period of record	Date	Discharge (ft ³ /s)
		Minnesota River basinContinu	1ed			
Hawk Creek	Minnesota River	Lat 44°44'11", long 95°25'21", in NE\sE\s sec.28, T.115 N., R.38 W., Renville County, Hydrologic Unit 07020004, at mouth of Hawk Creek, 0.25 mile northwest of County Highway 10 bridge on Minnesota River near Sacred Heart (05314550).	-	1990-91	7-1-91	1,180
Minnesota River	Mississippi River	Lat 44°43'54", long 95°25'14", in SE\SE\sec.27, T.115 N., R.38 W., Renville County, Hydrologic Unit 07020004, at bridge on County Highway 10, 4.5 miles southwest Sacred Heart (05314560).	-	1990-91	8-20-91	3,890
Minnesota River	Mississippi River	Lat 44°37'11", long 95°10'39", in NWkSWk sec.3, T.113 N., R.36 W., Renville County, Hydrologic Unit 07020004, at bridge on County Highway 21, 3 miles north of Delhi (05314740).	-	1990-91	8-20-91	4,060
Minnesota River	Mississippi River	Lat 44°32'46", long 94°59'45", in NE\sE\sec.36, T.113 N., R.35 W., Renville County, Hydrologic Unit 07020007, at bridge on State Highway 19 and Trunk Highway 71 at Morton (05316580).	-	1990-91	8-21-91	4,460
Minnesota River	Mississippi River	Lat 44°26'01", long 94°43'01", in NE\s\\ sec.8, T.111 N., R.32 W., Nicollet County, Hydrologic Unit 07020007, at bridge on State Highway 4, 4 miles south of Fairfax (05316685).	-	1990-91	8-21-91	4,590
Minnesota River	Mississippi River	Lat 44°21'43", long 94°29'50", in SWkNEk sec.1, T.110 N., R.31 W., Nicollet County, Hydrologic Unit 07020007, at bridge on County Highway 35, 1 mile northwest of New Ulm (053106760).	-	1990-91	8-21-91	5,240
Minnesota River	Mississippi River	Lat 44°15'28", long 94°20'29", in NE\sW\sec.8, T.109 N., R.29 W., Nicollet County, Hydrologic Unit 07020007, at bridge on County Highway 24 at Courtland (05317250).	a11,200	1938-50, 1990-91	8-22-91 9-6-91	5,500 1,170
Minnesota River	Mississippi River	Lat 44°12'00", long 94°11'36", in NE\sE\sec.33, T.109 N., R.28 W., Blue Earth County, Hydrologic Unit 07020007, at bridge on County Highway 42, 0.25 mile north of Judson (05317500).	-	1990-91	8-22-91 9-6-91	5,540 1,230
Blue Earth River	Minnesota River	Lat 44°04'06", long 94°06'00" in SE\sW\x sec.17, T.107 N., R.27 N., Blue Earth County, Hydrologic Unit 07020009, bridge at County Road 34, Rapidan (05318290)	-		3-15-91 3-21-91 3-22-92 3-26-91 4-3-91 4-9-91 5-6-91 5-7-91 5-8-91 5-9-91 6-5-91	278 958 1,570 2,530 2,170 1,330 4,490 5,070 5,480 6,760 7,820

[&]quot;See footnotes at end of the table."

Stream	Tributary	Location	Drainage area (mi ²)	Period of record	Date	Discharge (ft ³ /s)
		Minnesota River basinContinued		· · · · · · · · · · · · · · · · · · ·		
Blue Earth River	Minnesota River	Lat 44°09'48", long 94°02'12", in SWkNEk sec.13, T.108 N., R.27 W., Blue Earth County, Hydrologic Unit 07020009, at confluence with Minnesota River in Sibley Park above dam in Mankato (05322000).	-	1990-91	10-24-90 11-28-90 12-18-90 12-17-91 2-27-91 3-6-91 3-14-91 3-20-91 3-21-91 3-26-91 4-10-91 4-10-91 4-10-91 5-15-91 5-15-91 5-24-91 6-28-91 7-3-91 7-16-91 7-16-91 7-25-91 7-31-91 8-30-91	219 *76 *192 344 557 570 873 1,410 5,180 4,550 2,360 4,470 4,850 2,360 4,470 14,400 17,850 16,400 15,480 2,360 2,360 3,660 5,480 2,366 2,366 2,366 2,366 2,366 3,720 2,980 4,655
Minnesota River	Mississippi River	Lat 44°18'26", long 93°57'35", in SE½NW½ sec.28, T.110 N., R.26 W., Nicollet County, Hydrologic Unit 07020007, at bridge on State Highway 22 at St. Peter (05325200).	-	1990-91	9-26-91 8-22-91	1,350 7,950
Rush River	Minnesota River	Lat 44°29'57", long 93°54'18" in NWkNWk sec.24, T.112 N., R.26 W., Sibley County, Hydrologic Unit 07020007, at bridge on State Highway 93, 2 miles south of Henderson (05326400).	-	1990-91	5-30-91	1,820
Minnesota River	Mississippi River	Lat 44°31'46", long 93°54'02", in SE\SW\ sec.1, T.112 N., R.26 W., Sibley County, Hydrologic Unit 07020012, at bridge on State Highway 19 at Henderson (05326450).	-	1990-91	8-23-91	7,940
		Garvin Brook ba	sin			
Garvin Brook	Mississippi River	Lat 44°01'24", long 91°47'06", in SWkSEk sec. 33, T.107 N., R. at 8 W. Winona County, Hydrologic Unit 07040003, on Chicago and North- western Railroad bridge, 1.0 mile west of Stockton, 0.9 mile upstream from Stockton Valley Creek (05378220)		#1982-83, 1991	7-21-91	11,000


[&]quot;See footnotes at end of the table."

Discharge measurements made at miscellaneous sites during water year 1991--Continued

Stream	Tributary	Location	Drainage area (mi ²)	Period of record	Date	Discharge (ft ³ /s)
		Garvin Brook b	esinConti	nued		
Stockton Valley Creek	Garvin Brook	Lat 44°00'56", long 91°45'36", in SEkNEk sec. 3, T. 106 N., R. 8 W., Winona County, Hydrologic Unit 07040003, 0.9 mile above mouth, and 1.0 mile south of Stockton (05378230).	-	#1982-83, #1984-85, 1991	7-21-91	†42,300
Garvin Brook	Mississippi River	Lat 44°04'16", long 91°45'51", in SE\nE\sec. 15, T. 107 N., R. 8 W., Winona County, Hydrologic Unit 07040003, on left bank, 20 ft downstream from County 23 bridge, 1.8 mile south of Minnesota City, and 2.3 miles upstream from Rollingston Creek (05378235).	- •	#1982-83, #1984-91	7-21-91	†11,200
		Gilmore Creek	basin			
Gilmore Creek	Mississippi River	Lat 44°02'40", long 91°41'25", in Sec. 29, T. 107 N., R. 7 W., on left bank about 1,500 ft upstream from bridge carrying U.S. Highway No. 14 at the west edge of Winona, Winona County, Minn., and about 2½ miles above Lake Winona, into which the stream flows (05379000).	8.95	#1939-63, +1964-65, 1991	7-21-91	†e4,400

[#] Operated as a continuous record station.
+ Operated as a high-flow partial record station.
a Approximately.
b Stage only.
e Estimated.

Water-quality Partial Record Stations

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

Water-quality partial-record stations are particular sites where chemical-quality, biological and (or) sediment data are collected systematically over a period of years for use in hydrologic analyses. Letter K indicates non-ideal colony count.

05305400 CHIPPEWA RIVER AT MONTEVIDEO

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT ANCE (US/CI (0009)	C - (ST M) UN	AND- RD ITS) (EMPER- ATURE WATER DEG C) 00010)	BARC METI PRES SUB (MA OB HG) (0002	RIC S- RE OXY M D F SO	GEN, I GEN, I OIS- (OLVED LE IG/L) (M	MAND, DE HEM- E CAL C HIGH I VEL) 5 G/L) (YGEN MAND, IO- HEM- CAL, DAY MG/L)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
JUN												
22	1100	860	422	7	.9	19.0	742	2 6	.6	54	2.1	208
DATE JUN 22	RESID VOLA TILE SUS- PENDE (MG/ (0053	D (MGL) AS	RO- IN, N LITE AL /L N)	NITRO- GEN, ITRITE DIS- SOLVED (MG/L AS N) 00613)	NITRO GEN, NO2+NO TOTAL (MG/L AS N) (00630	NO2+ 3 DI SOL (MG AS	N, NO3 S- A VED /L N) 31)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AM- MONIA + ORGANIO	GEN, MONI ORGA DIS (MG AS	AM- A + NIC //L N) 23)
DATE	PHOS PHORU TOTA (MG/ AS F	IS DI L SOL L (MG	US P S- O VED /L P)	PHOS- HORUS RTHO TOTAL (MG/L AS P) 70507)	PHOS-PHORUS ORTHO DIS-SOLVED (MG/L AS P) (00671	CARB ORGA DIS SOLV (MG AS	ON, C NIC - I ED /L C)	CARBON, DRGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHY PLA TO CHRO I FLUO (UG	TO- NK- N MO ROM (/L)
JUN												
22	0.2	2 0.	14	0.15	0.12	7.	4	>7.1	270	1.20	<0.	60

05313510 YELLOW MEDICINE RIVER ON HWY 67 NEAR GRANITE FALLS

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC FRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	DEMAND, DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) 00310)	RESIDUE TOTAL AT 105 DEG. C. SUS- PENDED (MG/L) (00530)
05	1130	1480	681	7.9	19.5	748	6.9	79	3.6	384
DATE	RESIDI VOLA TILE SUS- PENDE (MG/) (0053	- GEN , NITRI TOTA D (MG/ L) AS N	I NITRI TE DIS L SOLV L (MG/	I, NIT TIE GE S- NO2+ VED TOT 'L (MG I) AS	N, NO2+ NO3 DI3 AL SOL' /L (MG N) AS 1	N, NITI NO3 GEI S- AMMOI VED TOTA /L (MG N) AS I	N, AMMONIA DIS AL SOLV /L (MG/ N) AS N	N, GEN,AM NIA MONIA S- ORGANI /ED TOTAL /L (MG/L N) AS N)	- GEN, + MONI C ORGA DIS (MG	A + INIC 5. 5/L N)
JUN 05	60	0.1	.9 0.1	LO 4.	9 4.	9 0.:	LB 0.1	1.2	1.	0
DATE	PHOS PHORU: TOTA: (MG/: AS P	PHOS - PHORU S DIS L SOLV L (MG/	FHOSE PHOSE FOR THE PHOSE FOR	PHOS PHOR DIS ORT DIS SOLVIL (MG/P) AS P	S- US CARBO HO, ORGAI - DIS ED SOLVI L (MG	CARBO DN, ORGAI NIC SUS: - PENDI ED TOTA (L (MG)	ON, NIC SEDI AL SUS- (L PENI C) (MG/	CHLOR-PHYTO - PLANK - TON - CHROMO DED FLUORO (L) (UG/L	A CHLC PHY PLA TO CHRC M FLUC	OR-B ITO- INK- IN IMO IROM IJ(L)
JUN 05	0.2	6 0.0	9 0.2	21 0.	08 7.	1 >4.5	616	· 6.30	<1.	10

05314550 HAWK CREEK AT MOUTH NEAR SACRED HEART

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE CIF CON DUC ANC (US/ (000	FIC I- E CT- (SI CE A CCM) UN	AND- ARD UITS)	TEMPER- ATURE WATER (DEG C) (00010)	PRI SI (N	TRIC ES- JRE OX MA OF S G) (1	YGEN, DIS- OLVED MG/L) 0300)	OXYG DEMA CHE ICA (HIC LEVE (MG/)	ND, DEN M- BI L CE GH IC L) 5 L) (N	GEN IAND, IO- IEM- IAL, DAY IG/L)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
JUL 01	1530	1180	87	'0 E	3.2	23.5	73	33	7.7	12	0 4	.2	552
DATE	RESI VOL TIL SUS PEND (MG (005	A- G E, NIT - TO ED (M /L) AS	RIŤE TAL G/L N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO GEN NO2+NO TOTAI (MG/I AS N) (00630	O- GI , NO2- O3 D: L SOI L (MX	IS- LVED G/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	AMMO	, (IIA	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NIT GEN, MONI ORGA DIS (MG AS 1	AM- A + NIC /L N)
JUL 01	28	0	. 07	0.06	11	10)	0.06	0.0	14	2.8	1.	2
DATE	PHO PHOR TOT (MG AS (006	S- PHO US D AL SO /L (M P) AS	IS- LVED G/L P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO DIS- SOLVEI (MG/L AS P) (0067:	S CARI D, ORGA DIS D SOLV (MX AS	ANIĆ 5- 7ED 5/L C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI MENI SUS- PENI (MG/ (8015	ED 1	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOI PHY PLA TOI CHROI FLUOI (UG (709	TO- NK- N MO ROM /L)
JUL 01	0.	49 0	. 30	0.25	0.25	5 7.	. 0	>9.8	116	0	9.90	1.	20

05314560 MINNESOTA RIVER NEAR SACRED HEART

DATE	TIME		ANCE (US/CM)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L) (00310	AT 105 DEG. C, SUS- PENDED (MG/L)
AUG 20	0845	3890	890	8.3	22.5	739	7.9	51	5.6	6
DATE	RESII VOLA TILI SUS- PENDI (MG,	A- GEN E, NITRI - TOTAL ED (MG/I /L) AS N 35) (0061:	NITRI TE DIS L SOLV L (MG/) AS N 5) (0061	TE GE NO2+ ED TOT L (MG AS 3) (006	RO- GH N, NO2- NO3 DI AL SOI //L (MX N) AS 30) (006	S- AMMO VED TOT (/L (MG N) AS (31) (006	RO- GE N, AMMO NIA DI AL SOL J/L (MG N) AS	N, GEN NIA MON S- ORG VED TO :/L (M N) AS 08) (00	,AM- GEI IA + MOI ANIC ORI TAL D. G/L (I N) AI 625) (00	ITRO- N.AM- NIA + SANIC IS. MS/L S N) 0623)
20	•	5 0.01	0.01	1.	4 1.	4 <0.	01 0.	01 1	.6	0.9
DATE	PHOS PHORI TOTA (MG, AS 1	JS DIS- AL SOLVI /L (MG/I P) AS P	S PHORU - ORTHO ED TOTA L (MG/) AS P	S ORT DIS L SOLV L (MG/	US CARI HO, ORGA - DIS ED SOLV L (MC	NIĆ SUS - PEND ED TOT I/L (MG C) AS	INIC I- SED IED MEN IAL SUS I/L PEN C) (MG	PH OI - PL OI - T OI - CHR ODED FLU O/L) (U	YTO- PI ANK- PI ON CHI OROM FLI G/L) (LOR-B HYTO- LANK- TOMO ROMO JOROM JG/L)
AUG 20	0.2	22 0.1	0.0	9 0.	07- 9.	8 3.	3 8	2 3	0.0 <	0.10

05314740 MINNESOTA RIVER NEAR DELHI

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L)	AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
31 AUG	1730		1200	8.0	0.5	740	8.5			••
20	1345	4080	874	8.3	23.0	739	8.2	43	4.6	58
DATE	RESI VOI TII SUS PENI (MG	A- GI LE, NITI S- TO: DED (MC G/L) AS	TRO- GI EN, NITI RITE DI FAL SOI G/L (M N) AS	RITE GE IS- NO24 LVED TO1 G/L (MG N) AS	TRO- GE IN, NO2+ NO3 DI TAL SOL G/L (MG	NÓ3 GE S- AMMO VED TOT (/L (MG N) AS	RO- GE IN, AMMO INIA DI IAL SOL I/L (MG IN) AS	N, GEN, NIA MONI S- ORGA VED TOT /L (MG N) AS	AM- GEI IA + MOI ANIC ORG IAL DI B/L (N	ITRO- N.AM- NIA + SANIC IS. 45/L S N) 1623)
AUG 20		19 0.0	0.0	01 1.4	1.4	<0.	01 0	01 1	8	1.3
DATE	PHOF PHOF TOI (MC AS (006	OS-PHOI RUS DI RAL SOI G/L (MX P) AS	RUS PHOI IS- ORTI LVED TO F/L (M P) AS		RUS CARE THO, ORGA S- DIS FED SOLV L (MG P) AS	NIC SUS - PEND ED TOT 5/L (MG C) AS	NIĆ - SED ED MEN AL SUS /L PEN C) (MG	PHY I- PLA T, TO - CHRO DED FLUC	TTO- PI ANK- PI OMO CHI OROM FLU	LOR-B 1YTO- LANK- TON ROMO JOROM JG/L) 1954)
AUG 20	0.	.24 0	.11 0	.08 0.	07 9.	6 3.	7 10	0 21.	.0 <0	0.10
	JA	DATE		2,4,5-T TOTAL (UG/L)	2,4-D, TOTAL (UG/L) (39730)	DICAMBA (MED- IBEN) (BAN- VEL D) TOTAL (UG/L) (82052)	PICLO- RAM (TOR- DON) (AMDON) TOTAL (UG/L) (39720)	SILVEX, TOTAL (UG/L) (39760)		

05316541 REDWOOD RIVER BELOW RAMSEY CREEK AT REDWOOD FALLS

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CN	P ST A (1) UN	AND- A RD W IITS) (D	MPER- TURE WATER EG C) 0010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L (00310	AT 105 DEG. C, SUS- PENDED) (MG/L)
JUN 05	1600	2640	515	8	3.0 2	0.0	748	8.9	50	2.9	264
DATE	RESII VOL. TILI SUS: PENDI (MG)	A- G E, NIT - TO ED (M /L) AS	TRO- EN, NI RITE TAL S G/L (N) A	VITRO- GEN, ITRITE DIS- SOLVED (MG/L AS N) 00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NO2+N DIS SOLV (MG/ AS N	, NIT 03 GE - AMMO ED TOT L (MG) AS	RO- GE N, AMMO NIA DI AL SOL /L (MG N) AS	IN, GEN DNIA MON S- ORG VED TO G/L (M N) AS	AM- GE IA + MO ANIC OR TAL D IG/L (I	ITRO- N,AM- NIA + GANIC IS. MG/L S N) 0623)
JUN 05	40	6 0	.21	0.10	6.5	6.5	0.	22 0.	15	1.8	1.7
DATE	PHOR PHOR TOTA (MG AS 1	S- PHO US D AL SO /L (M P) AS	RUS PE IS- OF LVED T G/L (P)	PHOS-HORUS RTHO FOTAL (MG/L AS P) 70507)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)	DIS- SOLVE (MG/ AS C	IĆ SUS PEND D TOT L (MG) AS	NÍĆ - SEI ED MEN AL SUS /L PEN C) (MG	PH DI- PL IT, T G- CHR IDED FLU G/L) (U	YTO- P ANK- P ON OMO CH OROM FL G/L) (LOR-B HYTO- LANK- TON ROMO UOROM UG/L) 0954)
JUN 05	0.:	37 0	. 20	0.33	0.19	6.3	>4.	9 29	96 2	.70 <	1.10

05316580 MINNESOTA RIVER AT MORTON

DATE	TIME S	NST. C CUBIC C FEET D PER A SECOND (U	UCT- (SI NCE A S/CM) UN	TAND- AT ARD WA WITS) (DI	ME PR IPER S IURE (ATER IG C) E	MM E OF SO IG) (N	DEN CE GEN, IC IS- (F OLVED LEV IG/L) (MC	AAND, DEM HEM- BI CAL CE HIGH IC VEL) 5 G/L) (M	GEN RESIDUE AND, TOTAL O- AT 105 EM- DEG. C, AL, SUS- DAY PENDED G/L) (MG/L) 310) (00530)
AUG 21	0930	4460	905 8	3.5 22	2.0 7	39 7	.9	15 5	.8 14
DATE	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
AUG 21	12	0.02	0.02	2.2	2.2	<0.01	0.01	1.3	1.1
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PÄYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
AUG 21	0.24	0.10	0.08	0.07	9.2	3.4	102	19.0	<0.10

05316685 MINNESOTA RIVER NEAR FAIRFAX

DATE	TIME		ANCE (US/CM)	STAND- ARD (IUNITS) (I	EMPER- ATURE WATER DEG C)	(MM OF HG)	XYGEN, I XYGEN, I DIS- C SOLVED LI (MG/L) (N	EMAND, DEN CHEM- BI CCAL CE (HIGH IC EVEL) 5 4G/L) (M	GEN RESIDUE AND, TOTAL O- AT 105 IEM- DEG. C, AL, SUS- DAY PENDED G/L) (MG/L) 310) (00530)
AUG 21	1245	4590	911	8.5	23.0	739	7.5	46 4	.0 11
DATE AUG	RESID VOLA TILE SUS- PENDE (MG/ (0053	GEN NITRI TOTAL CONTROL (MG/) L) AS N (5) (0061	, NITRIT TE DIS- L SOLVE L (MG/L) AS N) 5) (00613	NITRO E GEN, NO2+NO3 D TOTAL (MG/L AS N) (00630)	NO2+NO: 3 DIS- SOLVEI (MG/L AS N)) (00631)	NITRO GEN, AMMONI TOTAL (MG/L AS N) (00610	AMMONÍA A DIS- SOLVEI (MG/L AS N)) (00608)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + CRGANIC DIS. (MG/L AS N) (00623)
21 Date	PHOS PHORU TOTA (MG/ AS P	L SOLVI L (MG/I) AS P	- PHOS-S PHORUS ORTHO L (MG/L) AS P)	PHOS-PHORUS ORTHOD DIS-SOLVED (MG/L AS P)) (00671)	DIS- SOLVED (MG/L AS C)	PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDEI (MG/L)	(UG/L)	O.90 CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
AUG 21	0.2	2 0.1	1 0.09	0.07	9.3	2.8	100	20.0	<0.10

05316760 MINNESOTA RIVER NEAR NEW ULM

DATE	TIME	INST. COUBIC COUBIC COURSE COURTER AND SECOND (US	UCT- (SI NCE A S/CM) UN	AND- AT ARD WA IITS) (DE	ME PR MPER- S TURE (MTER MG C) E	MM D OF SO IG) (M	DEM CE GEN, IC IS- (B LVED LEV G/L) (MG	EM- BI EAL CH (IGH IC (EL) 5 (/L) (M	AND, TOTAL
AUG 21	1430	5240	912 8	3.7 2	25.0 7	739 8	.2	43 5	.1 <1
DATE	RESIDU VOLA- TILE, SUS- PENDED (MG/L (00535	GEN, NITRITE TOTAL (MG/L) AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
AUG 21	<1	0.03	0.02	2.7	2.7	<0.01	0.03	1.5	0.90
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665	DIS- SOLVED (MG/L AS P)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
AUG 21	0.21	0.11	0.08	0.07	8.9	3.1	77	21.0	<0.10

05317250 MINNESOTA RIVER AT COURTLAND

DATE	CHZ IN CU I TIME I SI	JBIC CO YEET DU PER AN ECOND (US	FIC N- F CT- (ST CE A /CM) UN	AND- AT ARD WA HTS) (DE	MI PER- URE TER G C)	(MM) OF S(EG) (1	DEN CE YGEN, IC DIS- (F DLVED LEV MG/L) (MC	IEM- BI CAL CH HIGH IC VEL) 5 G/L) (M	AND, TOTAL
AUG 22	0900 55	500 8	66 8	3.4 23	.0	746	7.2	39 3	.9 33
SEP 06	1140 11	170 9	61 8	3.2 21	5	746	7.9	44 4	.9 53
DATE AUG 22 SEP 06	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615) 0.03	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.02	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) 2.7	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 2.7	NITROGEN, AMMONIA TOTAL (MG/L AS N) (00610) <0.01	NITROGEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <0.01	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- FLANK- TON CHROMO FLUOROM (UG/L) (70954)
AUG 22 SEP	0.21	0.10	0.08	0.06	8.6	2.5	111	11.0	<0.10
06	0.17	0.09	0.06	0.04	8.1	>1.2	122	4.90	<0.10

05317500 MINNESOTA RIVER AT JUDSON, MN

DATE	CHA II CI TIME I	NST. CI UBIC CO PEET DU PER AN ECOND (US	ICT- (ST ICE A S/CM) UN	TAND- AT ARD WA VITS) (DI	ME PE MPER - S MURE (MTER MG C) I	(MM I OF SO EG) (P	DEN CE (GEN, IC DIS- (FO DLVED LEV 4G/L) (MC	IAND, DEM IEM- BI CAL CE HIGH IC VEL) 5 G/L) (M	GEN RESIDUE AND, TOTAL O- AT 105 EM- DEG. C, AL, SUS- DAY PENDED G/L) (MG/L) 310) (00530)
AUG 22 SEP	1115 5	540 8	54 8	3.4 24	.0 7	742 7	7.2	39 3	.9 62
06	1530 12	240 9	142 8	3.3 23	3.0	745 9	9.9	55 5	.0 79
AUG 22 SEP 06	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	NITROGEN, NITRITE TOTAL (MG/L AS N) (00615) 0.02	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <0.01	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- FLANK- TON CEROMO FLUOROM (UG/L) (70954)
AUG 22 SEP 06	0.22 0.23	0.10 0.07	0.07	0.06 0.03	8.5 7.5	2.2 4.2	130 115	11.0 6.70	<0.10 <0.10

05318290 BLUE EARTH RIVER NEAR GOOD THUNDER, MINNESOTA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
MAR 15 19 21 22 26 APR	1300 1615 1145 1545 0845	278 419 958 1570 2530	637 600 606 526 678	8.4 8.0 8.7 8.3 8.5	1.0 1.0 0.5 1.5 5.0	747 736 728 724 726	13.5 12.9 13.3 13.0 11.3	20 23 50 66 49	1.1 3.3 3.7 5.2 3.9	84 81 75 68 94	26 26 23 20 28	19 21 17 12 12
03 09 MAY	0900 1600	2170 1330	722 761	6.5 8.7	8.0 10.5	744 738	13.5 10.4	3 4 38	2.4 4.5			
06 07 08 09 16 JUN	0915 0945 1420 1015 0945	4490 5070 5480 6760 3640	599 609 607 565 722	7.9 8.3 7.8 7.8 8.3	7.5 8.0 9.0 10.0 19.0	737 745 740 740 735	10.8 12.6 10.0 10.1 8.9	60 45 43 47 33	2.8 2.5 2.5 2.9 1.6		 	
06 Jul	0915	7850	53 9	8.3	19.5	748	7.6	49	1.8	~-		
22 23 24 25	1830 1500 0900 1800	2540 3050 2710 2000	548 496 517 669	8.4 8.2 8.2 8.5	26.5 24.5 22.5 22.5	741 745 741 744	6.8 6.9 7.5 9.2	120 89 54 40	4.0 3.3 3.6 2.3			
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	BORON, DIS- SOLVED (UG/L AS B) (01020)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)
MAR 15 19 21 22 26	SIUM, DIS- SOLVED (MG/L AS K)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	VOLA- TILE, SUS- PENDED (MG/L)	DIS- SOLVED (UG/L AS B)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)
MAR 15 19 21 22 26 APR 03	STUM, DIS- SOLVED (MG/L AS K) (00935) 3.5 3.2 3.6 3.4	DIS- SOLVED (MG/L AS SO4) (00945) 70 69 69 43	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 9 128 231 391	VOLA- TILE, SUS- PENDED (MG/L) (00535)	DIS- SOLVED (UG/L AS B) (01020) 50 60 60 40	GEN, NITRITE TOTAL AS N) (00615) 0.04 0.03 0.04 0.09	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.04 0.03 0.03 0.07 0.06	GEN, NO2+NO3 TOTAL AS N) (00630) 7.0 5.2 5.3 9.3	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 6.7 5.2 4.8 7.5	GEN, AMMONIA TOTAL (MG/L AS N) (00610) 0.21 0.16 0.19 0.21
MAR 15 19 21 22 26 APR 03 09 MAY 06 07 08	STUM, DIS- SOLVED (MG/L AS K) (00935) 3.5 3.2 3.6 3.4 3.5	DIS- SOLVED (MG/L AS SO4) (00945) 70 69 69 43 56	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 30 30 34 27 35	RIDE, DIS- SOLVED (MG/L AS F) (00950) 0.3 0.3 0.3 0.3	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 9 128 231 391 275	VOLA- TILE, SPENDED (MG/L) (00535)	DIS- SOLVED (UG/L AS B) (01020) 50 60 60 40 30	GEN, NITRITE TOTAL (MG/L AS N) (00615) 0.04 0.03 0.04 0.09 0.12	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.04 0.03 0.03 0.07 0.06	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) 7.0 5.2 5.3 9.3 17	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 6.7 5.2 4.8 7.5 17	GEN, AMMONIA TOTAL (MG/L AS N) (00610) 0.21 0.16 0.19 0.21 0.26
MAR 15 19 21 22 26 APR 03 09 MAY 06 07 08	STUM, DIS- SOLVED (MG/L AS K) (00935) 3.5 3.2 3.6 3.4 3.5	DIS- SOLVED (MG/L AS SO4) (00945) 70 69 69 43 56 	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 30 34 27 35 	RIDE, DIS- SOLVED (MG/L AS F) (00950) 0.3 0.3 0.3 0.4	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 9 128 231 391 275 119 99 488 363 241 356	VOLA- TILE, SUS- PENDED (MG/L) (00535) 2 24 25 89 34 20 17 46 56 34 47	DIS- SOLVED (UG/L AS B) (01020) 50 60 60 40 30	GEN, NITRITE TOTAL (MG/L AS N) (00615) 0.04 0.03 0.04 0.09 0.12 0.05 0.03 0.15 0.15 0.15	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.04 0.03 0.07 0.06 0.05 0.03 0.07 0.08 0.07	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) 7.0 5.2 5.3 9.3 17 16 15	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 6.7 5.2 4.8 7.5 17 15 15 18 18 18 22 23	GEN, AMMONIA TOTAL (MG/L AS N) (00610) 0.21 0.16 0.19 0.21 0.26 0.02 <0.01 0.08 0.08 0.09 0.07

05318290 BLUE EARTH RIVER NEAR GOOD THUNDER, MINNESOTA--Continued

DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAR												
15	0.21	1.5	1.5	0.12	0.09	0.10	0.09	5.1	0.8	37		
19	0.16	1.5	1.0	0.12	0.05	0.08	0.05	6.3	2.7	193	6.70	0.60
21	0.19	1.1	0.90	0.30	0.09	0.12	0.09	6.5	>5.0	736	13.0	1.10
22	0.21	2.7	1.5	0.17	0.12	0.13	0.12	7.4	6.1	785	13.0	0.70
26	0.26	2.4	1.8	0.42	0.12	0.20	0.08	7.0	>5.0	707	6.00	0.40
APR	0.00			0.17		0.00	0.04			242	0.00	0.40
03. <i>.</i> . 09	0.02 <0.01	1.8 1.9	1.4 1.0	0.17 0.21	0.04 0.03	0.06 0.05	0.04 <0.01	6.4 6.1	2.9 4.8	242 270	9.30 17.0	0. 40 0. 9 0
MAY	~0.01	1.8	1.0	0.21	0.03	0.03	~0.01	0.1	4.0	2/0	17.0	0.80
06	0.07	2.8	1.1	0.50	0.12	0.21	0.11	5.8	8.8	993	5.90	<2.50
07	0.07	2.9	0.70	0.44	0.14	0.23	0.14	7.2		856	2.70	<1.10
08	0.08	2.8	0.70	0.38	0.13	0.19	0.13	7.0	5.3	631	3.00	<1.20
09	0.07	1.9	1.7	0.14	0.14	0.12	0.12	9.4	3.4	753	2.70	<1.10
16	0.02	1.8	1.2	0.19	0.06	0.06	0.05	6.5	2.2	365	6.30	<1.10
JUN												
06	0.05	1.4	1.2	0.36	0.18	0.31	0.18	7.1	5.4	566	2.20	<1.60
JUL 22	0.03	4.6	1.9	0.26	0.15	0.14	0.13	6.1	>5.0	210	1 13.0	1.40
23	0.03	2.8	1.4	0.43	0.15	0.17	0.15	5.8	>5.0		1 7.30	<1.40
24	<0.01	1.2	0.90	0.31	0.17	0.16	0.13	5.4	>5.0	638	6.30	<1.20
25	0.01	1.5	1.3	0.41	0.17	0.14	0.13	6.0	>5.0	361	13.0	1.30
				, .=		. •				. –		

05322000 BLUE EARTH RIVER AT MOUTH AT MANKATO

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC FRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
OCT 24 NOV	1300	257	693	8.8	9.5	749	16.0	51	6.8	K 6
28 DEC	1340	133	840	8.3	2.0	746	13.7	21	4.6	K8
18 JAN	1400	219	953	8.6	1.0	734	13.5	18	1.9	K5
11 FEB	1400	76	1090	7.9	2.5	745	10.2	14	2.0	>2
27 MAR	1145	192	504	8.5	1.5	742	17.4	24	1.5	18
06	1200	344	763	8.0	3.0	738	11.1	18	1.5	K10
14	1115	557	676	8.3	1.5	749	13.4	25	2.6	
19	0930	570	662		1.5	742	13.3	17	1.3	
20	1500	873	633	8.9	2.0	727		26	3.5	
21	1630	1410	603	8.8	1.5	734	14.1	37	3.8	
25	1515	5160	571	8.2 8.3	3.5	735 728	12.5 11.6	64 51	4.2 3.1	
26 APR	1430	5180	656	0.3	6.0	720	11.6	21	3.1	
02	1415	4550	690	8.5	6.5	748	12.9	45	2.7	
10	0945	2360	774	8.7	9.5	748	11.5	34	3.4	
17	1230	9360	726	8.3	9.5	745	12.4	52	1.8	
25	0845	4470	800	8.3	12.5	740	12.5	29	1.1	42
30	0930	4850	776	8.7	12.5	734	10.5	32	0.9	
MAY	0300	4030	***	0.7	14.5	704	20.5	02	0.0	
10	1000	14400	601	8.1	13.0	744	11.1	49	2.4	
15	0845	7850	665	8.2	19.0	738	9.5	37	1.5	
24	0910	7980	729	8.4	19.5	740	9.7	34	1.7	K200
31	0830	8700	730	8.2	21.0	735	9.2	37	1.2	
JUN										
06	1000	16400	534	8.1	20.5	748	8.4	55	2.3	
13	1045	15700	621	8.3	23.0	738	8.6	41	2.2	
20	0745	9480	714	8.4	21.5	742	9.1	51	2.0	K2500
28	0650	5650	721	8.0	25.5	741	8.5	39	1.5	
JUL										
03	0800	5580	672	8.3	23.5	738	8.1	39	1.7	
10	0800	2360	746	8.3	22.5	742	7.0	25	2.5	
16	0900	3660	720	8.4	24.0	744	10.2	40	1.3	
25	0745	5720	607	8.4	21.0	746	10.4	44	3.0	
31	0830	2980	666	8.3	21.5	744	8.6	30	1.8	K420
AUG										
30	1030	655	641	8.8	26.0	746	10.8	43	7.3	370
SEP	44.5	40.55					40 -			240
26	1245	1350	819	8.3	13.0	741	12.7	23		310

05322000 BLUE EARTH RIVER AT MOUTH AT MANKATO--Continued

DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)
OCT 24 NOV	K23							·	29	15
28 DEC	К9								16	<1
18 JAN	20								12	11
11 FEB	>2								6	6
27 MAR	37						••		6	6
06 14	7200	 88	 28	 22	4.0	 80	 37	0.2	3 20	1 5
19		87	27	22	3.8	81	13	0.2	16	9
20		80	25	21	3.0	82	35	0.3	21	9
21		76	25 24	19	4.8	79	33	0.3	31	9 9
25		79	23	10	3.8	63	30	0.3	371	46
26		87	26 26	10		65	32	0.3	174	22
APR		07	20	10	3.9	65	32	0.3	1/4	22
02									114	20
10									69	20 11
17									243	33
25	K52								243 25	33 11
23	K3Z								72	16
30 May									12	10
10									221	32
15									127	21
24	230								110	17
31	200								iii	-, 5
JUN										•
06									346	52
13									149	26
20	K4600								248	36
28									129	22
JUL.										
03									73	19
10									35	8
16									117	21
25									119	21
31	K260								65	3
AUG										
30	1600								9	<1
SEP										
26	1400								3	<1

05322000 BLUE EARTH RIVER AT MOUTH AT MANKATO--Continued

DATE	BORON, DIS- SOLVED (UG/L AS B) (01020)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 24		0.02	0.02	0.70	0.70	0.06	0.06	1.8	1.7
NOV					0.70				
28 DEC		0.02	0.02	2.5	2.5	0.07	0.07	1.2	0.50
18		0.02	0.02	3.5	3.5	0.16	0.16	0.70	0.60
JAN					• •			• •	
11 FEB		0.04	0.04	3.1	3.1	0.67	0.62	1.4	0.90
27		0.03	0.03	4.2	4.2	0.55	0.55	1.0	0.90
MAR 06		0.04	0.04	5.1	5.1	0.43	0.43	1.3	1.2
14	60	0.04	0.04	6.0	6.0	0.43	0.43	0.70	0.70
19	60	0.04	0.04	5.0	5.0	0.14	0.14	1.2	1.2
20	70	0.03	0.03	4.7	4.3	0.15	0.14	1.4	1.3
21	60	0.04	0.03	4.9	4.7	0.15	0.15	1.9	0.90
25	40	0.10	0.08	14	14	0.27	0.27	2.1	2.1
26	40	0.11	0.08	17	17	0.24	0.24	1.9	1.8
APR									
02		0.08	0.06	17	16	0.09	0.08	1.2	1.2
10		0.04	0.04	15	15	0.01	<0.01	1.9	1.5
17		0.08	0.06	21	21	0.12	0.12	1.8	1.4
25		0.04	0.03	20	20	0.02	0.02	2.0	0.80
30		0.05	0.04	18	18	0.02	<0.01	2.1	1.4
MAY				•	••				
10		0.11	0.08	24	24	0.06	0.06	2.3	1.6
15		0.10	0.08	20	20	0.03	0.03	3.0	1.6
24 31		0.10 0.09	0.06 0.07	19 19	19 19	0.04 0.02	0.04 0.02	1.4 1.6	1.4 1.6
JUN		0.09	0.07	19	19	0.02	0.02	1.6	1.0
06		0.22	0.11	14	14	0.14	0.10	1.9	1.1
13		0.13	0.09	15	15	0.05	0.02	2.1	ī.ī
20		0.09	0.05	17	17	0.05	0.02	1.9	1.9
28		0.05	0.03	16	16	0.03	0.03	2.0	1.4
JUL						••••			
03		0.07	0.04	13	13	0.03	0.02	1.4	1.0
10		0.02	0.01	13	13	0.01	0.01	1.5	1.1
16		0.04	0.03	15	15	<0.01	0.02	1.4	1.5
25		0.04	0.03	12	12	<0.01	0.01	1.2	1.2
31		0.02	0.02	11	11	0.01	0.01	1.5	1.1
AUG									
30		0.02	0.02	5.3	5.3	0.04	0.04	1.7	0.9
SEP						0.00	-0.01		
26		0.02	0.01	9.3	9.0	0.08	<0.01	1.2	0.6

05322000 BLUE EARTH RIVER AT MOUTH AT MANKATO--Continued

DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
OCT 24 NOV	0.10	0.10	0.02	0.02	6.4	>5.0	65	41.0	<1.10
28 DEC	0.06	0.04	0.03	<0.01	4.4	1.5	62	17.0	<0.60
18	0.13	0.04	0.04	0.03	5.4	1.0	41	5.80	<0.70
JAN 11 FEB	0.13	0.05	0.06	0.01	4.9	0.3	73	1.10	<0.30
27 MAR	0.23	0.16	0.17	0.13	6.7	0.6		<0.20	<0.20
06 14 19 20 21 25	0.18 0.20 0.13 0.19 0.26 0.31	0.12 0.13 0.08 0.13 0.09 0.14	0.13 0.11 0.10 0.11 0.13 0.16	0.11 <0.06 0.08 0.10 0.09 0.10	6.8 6.2 5.6 6.3 6.9 8.2	0.1 0.7 0.1 0.7 1.6 >5.0	156 98 36 112 831	1.50 4.10 2.40 5.10 11.0 3.00	<0.20 <0.50 <0.40 0.40 0.70 <0.40
26 APR 02 10	0.42 0.28 0.19	0.15 0.10 0.05	0.16 0.14 0.06	0.10 0.09 0.02	8.0 6.9 6.9	4.0 2.1 4.0	554 305 126	4.30 7.70 18.0	0.40 0.60 0.80
17 25 30	0.29 0.12 0.15	0.07 0.04 0.05	0.12 0.06 0.05	0.07 0.04 0.03	7.4 6.3 6.1	>5.0 1.5 1.9	661 188 226	6.10 3.00 8.20	<0.50 <0.30 0.40
10 15 24 31	0.15 0.19 0.20 0.29	0.11 0.09 0.08 0.25	0.15 0.12 0.11 0.12	0.11 0.07 0.07 0.10	8.1 7.2 7.3 7.0	3.2 2.8 1.8 1.6	525 390 253 267	2.00 6.30 <2.60 5.10	<1.20 <1.50 <1.20
JUN 06 13 20 28	0.35 0.18 0.21 0.27	0.20 0.15 0.14 0.12	0.34 0.18 0.15 0.13	0.20 0.15 0.12 0.09	7.6 6.9 6.5 6.1	>4.9 3.5 1.9 3.0	608 328 645 176	2.70 6.20 2.90 4.00	<1.10 <1.30 <0.60 <0.70
JUL 03 10 16 25 31	0.31 0.13 0.23 0.44 0.23	0.14 0.09 0.13 0.21 0.12	0.18 0.09 0.14 0.21 0.09	0.12 0.09 0.12 0.19 0.09	6.5 6.3 7.1 7.3 6.4	2.7 2.1 2.9 4.4 2.4	149 98 169 337 165	7.70 6.10 6.90 6.30 11.0	0.90 0.60 1.30 <0.80 <0.80
AUG 30	0.40	0.01	<0.01	<0.01	7.0	>5.0	70	14.0	<0.10
SEP 26	0.14	0.13	0.09	0.09	7.4	2.5	154	7.80	<0.10

05325050 MINNESOTA RIVER AT US HWY 14 BRIDGE AT MANKATO

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
APR										
17	1750	15100	776	8.3	10.0	743	11.0	50	2.2	236
25	1500	7760	896	8.4	13.0	738		36	1.1	58
30	1445	7940	844	8.5	12.5	734	10.7	38	0.9	98
MAY										
10	1445	20000	690	8.3	14.0	743	10.8	39	1.6	332
15	1425	11500	746	8.4	20.0	739	9.6	35	2.1	100
24	1345	12100	766	8.4	20.0	740	9.3	34	1.8	102
31	1245	14700	764	8.3	22.0	735	8.7	59	1.8	266
JUN										
06	1515	27700	621	8.1	20.0	748	7.8	43	1.8	228
13	1535	26000	738	8.4	23.5	735	7.7	41	2.2	103
20	1300	22200	784	8. 2	23.0	741	8.4	53	1.8	253
28	121 5	23900	743	8.1	25 .5	739	7.4	33	1.8	57
JUL										
03	1315	20700	754	8.3	24.0	738	6.9	37	2.5	52
10	1415	10400	872	8.3	25.0	742	7.5	39	2.3	35
16	1545	14400	720	8.3	26.0	744	9.2	34	2.2	88
25	1345	11000	749	8.3	23.0	748	9.6	46	3.4	125
31	1310	8530	743	8.2	23.5	745	7.6	36	2.5	80
AUG										
22	130 0	7410	811	8.4	24.0	746	8.9	120	4.0	40

DATE	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
APR									
17	29	0.08	0.06	20	19	0.10	0.10	1.7	0.90
25	12	0.04	0.03	15	14	0.02	<0. 01	1.5	1.1
30	20	0.05	0.04	14	13	0.14	0.04	1.6	1.2
MAY								`	
10	28	0.08	0.07	20	20	0.04	0.04	2.8	2.0
15	18	0.08	0.07	16	16	0.02	0.02	1.7	1.4
24	19	0.10	0 .07	16	16	0. 0 3	0.03	1.5	1.5
31	48	0.17	0.10	16	16	0.05	0.05	2.2	1.4
Jun									
06	38	0.20	0.15	12	12	0.12	0.08	1.7	1.2
13	19	0.16	0.14	10	10	0.03	0.03	1.7	1.2
20	38	0.13	0.07	10	10	0.08	0.04	2.1	1.4
28	9	0.09	0.06	8.9	9.1	0.03	0.03	1.5	1.1
JUL									
03	28	0.09	0.06	7.6	7.6	0.04	0.04	1.1	1.1
10	9	0.03	0.02	6.9	6.8	0.01	0.05	1.3	0.90
16	18	0.07	0.04	7.0	6.9	0.06	0.05	1.2	1.3
25	24	0.04	0.03	8.0	8.0	0.01	<0.02	1.8	1.3
31	13	0.04	0.04	7.7	7.7	0.02	<0.01	1.7	1.2
AUG									
22	21	0.03	0.02	4.6	4.6	0.01	<0.01	1.4	1.3

05325050 MINNESOTA RIVER AT US HWY 14 BRIDGE AT MANKATO--Continued

DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
APR									
17	0.23	0.07	0.12	0.06	7.3	4.5	594	4.50	<0.50
25	0.12	0.03	0.04	0.03	6.6	1.8	172	6.70	0.50
30	0.18	0.05	0.05	0.02	6.4	3.2	328	19.0	0.80
MAY			• • • • • • • • • • • • • • • • • • • •	••••	•••				
10	0.18	0.09	0.12	0.09	11	3.2	482	4.00	<1.20
15	0.13	0.06	0.07	0.04	7.3	2.7	332	8.90	1.10
24	0.18	0.07	0.10	0.07	6.9	1.9	232	2.60	<1.50
31	0.36	0.12	0.18	0.11	7.1	4.5	473	6.00	<1.20
Jun									
06	0.36	0.18	0.27	0.18	7.6	>4.9	512	1.70	<1.10
13	0.17	0.15	0.17	0.14	7.2	2.8	297	7.20	1.30
20	0.24	0.17	0.19	0.15	6. 8	>5.0	415	3.30	<0.60
28	0.31	0.18	0.19	0.15	7.2	2.0	126	1.80	0.80
JUL									
03	0.33	0.18	0.21	0.16	8.1	1.5	152	3.10	<0.90
10	0.18	0.10	0.14	0.14	8.0	2.5	188	0.80	0.10
16	0.29	0.16	0.20	0.16	7.7	2.3	166	7.50	0.80
25	0.42	0.17	0.17	0.14	8.1	4.4	244	17.0	2.10
31	0.31	0.12	0.11	0.09	7.2	3.4	168	14.0	1.10
AUG 22	0.22	0.08	0.07	0.06	8.0	3.0	154	13.0	<0.10

05325200 MINNESOTA RIVER AT ST. PETER

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
AUG 22	1415	7950	827	8.4	24.0	742	7.5	37	4.2	78
DATE	RESID VOLA TILE SUS- PENDE (MG/ (0053	- GEN NITRI TOTA D (MG/ L) AS N	, NITRI TE DIS L SOLV L (MG/	TE GE TO TOT. L (MG L (MG L) AS	N, NO2+ NO3 DI AL SOL /L (MG N) AS	N, NITI NO3 GE S- AMMO VED TOTA /L (MG N) AS	N, AMMON NIA DIS AL SOLV /L (MG/ N) AS 1	N, GEN,A NIA MONIA S- ORGAN /ED TOTA /L (MG/ N) AS N	MM- GEN, A + MONI HIC ORGA AL DIS 'L (MG H) AS	A + NIC /L N)
AUG 22	29	0.02	0.02	4.7	4.7	<0.0	1 <0.01	l 1.4	1.	0
DATE	PHOS PHORU: TOTA (MG/: AS P (0066	S DIS L SOLV L (MG/) AS P	S PHORU - ORTHO ED TOTA L (MG/	S ORT DIS L SOLV L (MG/2	US CARB HO, ORGA - DIS ED SOLV L (MG) AS	NIĆ SUS - PENDI ED TOTA /L (MG C) AS (NIĆ - SEDI ED MENI AL SUS- /L PENI C) (MG/	f, TON CHROM DED FLUOR (L) (UG/	O-PHY IK-PLA I TO IO CHRO ROM FLUO IL) (UG	TO- NK- N MO ROM (/L)
AUG 22	0.2	2 0.1	0 0.0)8 O.(07 7	.9 2	.7 1	162 16.0) < 0.	10

05326400 RUSH RIVER NEAR HENDERSON, MN

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC FRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
MAY 30	1030	1820	504	8.1	19.0	734	7.0	86	3.5	436
DATE MAY 30	RESID VOLA TILE SUS- PENDE (MG/ (0053	GEI , NITR TOTA D (MG, L) AS 1	N, NITR ITE DI AL SOL /L (MG N) AS	N, NIT ITE GE S- NO24 VED TOT /L (MG N) AS 13) (006	TRO- GE TN, NO24- NO3 DJ TAL SOI S/L (MC N) AS 130) (006	NÓ3 GE S- AMMC VED TO1 J/L (MG N) AS 31) (006	AL SOL J/L (MG N) AS	N, GEN, NIA MONI S- ORGA VED TOI /L (MC N) AS 08) (006	AM- GEN IA + MONI ANIC ORGA IAI DIS G/L (MC N) AS 625) (006	ANIC S. S/L N) 523)
DATE MAY	PHOSE PHORU TOTA (MG/AS F (0066	IS DIS L SOLV L (MG,	JS PHOR S- ORTH VED TOT. /L (MG P) AS	US ORI O DIS AL SOLV /L (MG/ P) AS F	RUS CARE THO, ORGA S- DIS VED SOLV 'L (MC ') AS	NIĆ SUS - PENI 'ED TO'I G/L (MG C) AS	INIC S- SED DED MEN CAL SUS S/L PEN C) (MG	I- PLA T, TO - CHRO DED FLUO /L) (UG	TTO- PHY ANK- PLA OM TO OMO CHRO OROM FLUG G/L) (UG	YTO- NK- NO OMO
30	0.5	5 0.2	26 0.	36 0.	25 10	6.	7 10	70 5.	.10 <1.	.20

05326450 MINNESOTA RIVER AT HENDERSON

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED	DEMAND, DECREM- FICAL (HIGH LEVEL) (MG/L)	KYGEN EMAND, BIO- CHEM- ICAL, DAY (MG/L) 00310)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
AUG 23	1000	7940	874	8.4	23.5	747	7.8	140	4.1	59
DATE	RESIC VOLA TILE SUS- PENDE (MG) (0053	A- GEN C, NITR C- TOTA ED (MG, /L) AS N	N, NITRI ITE DIS AL SOLV /L (MG/ N) AS N	TE GE - NO2+ ED TOT L (MG	RO- GE N, NO2- NO3 DI AL SOI J/L (MC N) AS	-NÓ3 GE S- AMMO VED TOT G/L (MG N) AS	NÍA DIS FAL SOLV F/L (MG/ N) AS N	GEN,AM- IIA MONIA ORGANIO /ED TOTAL /L (MG/L I) AS N)	GEN,A MONIA ORGAN DIS (MG, AS N	M- 1 + 1 C /L 1)
AUG 23	22	2 0.0	3 0.02	4.	8 4.	8 0.	01 <0.0	1.1	1.0)
DATE	PHOS PHORU TOTA (MG, AS I (0066	JS DIS AL SOLV (L (MG) P) AS	US PHORUS - ORTHOVED TOTA /L (MG/P) AS F	S ORT DIS L SOLV L (MG/	EUS CARI EHO, ORGA E- DIS ED SOLV L (MC	NNIĆ SUS 5- PEND VED TOT 5/L (MG C) AS	NIĆ 3- SEDI DED MENI PAL SUS- B/L PENI C) (MG/	CHROMO CED FLUORON (L) (UG/L)	PHYTOLOGY CHRON FLUOR (UG)	TO- NK- N MO ROM /L)
23	0.2	20 0.	11 0.0	8 0.	07 7	8 3.	0 177	25.0	<0.3	10

05344995 VERMILLION RIVER TRIBUTARY NEAR FARMINGTON, MN

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
FEB 05 APR	1415	1.2	594	8.1	6.0	10.5	1	320	81	27	6.5	1.7
08	1200		620	7.6	9.5	9.1	19	150	86	29	9.5	2.2
MAY 16	0915	12	600	7.6	14.5	6.5	230	1100	83	26	9.7	1.3
DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	NITRO- GEN, NITRITE DIS SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
FEB 05	47	23	0.1	24	0.01	0.60	0.02	0.40	0.40	0.04	0.02	0.02
APR 08	63	25	0.2	18	0.02	1.1	0.05	0.50	0.40	0.05	0.02	<0.01
MAY 16	44	23	0.2	15	0.04	1.7	0.06	0.80	0.80	0.04	0.03	0.02

05345200 VERMILLION RIVER TRIBUTARY NEAR EMPIRE, MN

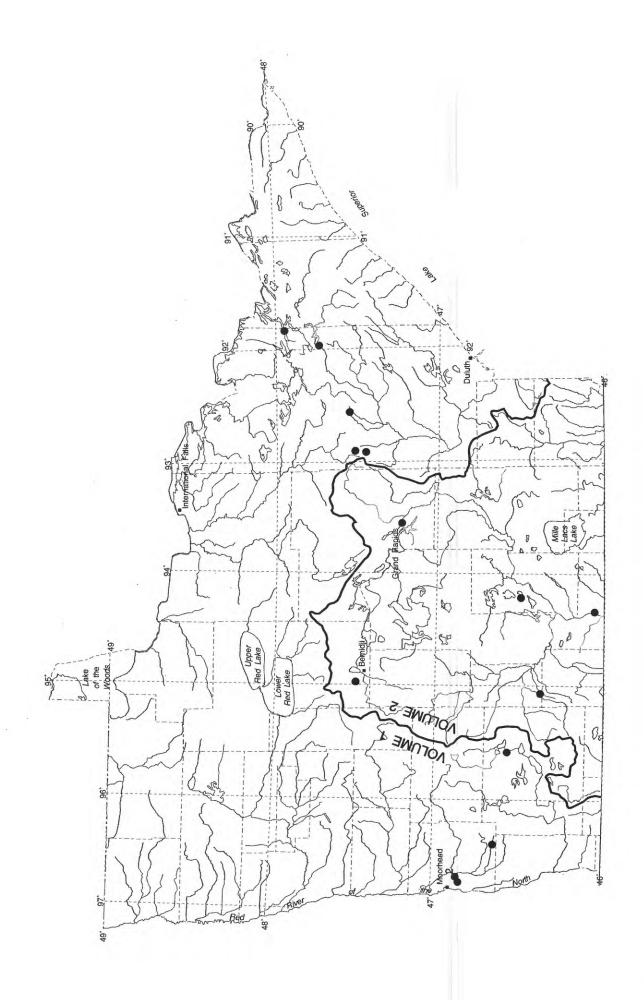
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
MAY 16	1230	0.01	694	7.5	20.0	2.1	160	980	100	30	6.0	7.0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
MAY 16	73	15	0.1	20	0.02	<0.05	0.21	1.2	1.0	0.13	0.07	0.04

443933093002801 - SOUTH BRANCH VERMILLION RIVER AT EMPIRE, MN

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
FEB 05 APR	1015	8.7	463	8.1	2.0	11.0	400	2400	57	22	4.6	4.0
11 MAY	0930		514	8.0	6.5	10.3	42	84	70	24	5.4	1.4
17	1045	15	491	7.9	13.5	8.5	170	350	68	23	5.0	1.2
DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
FEB 05												
	27	14	0.2	13	0.02	5.4	0.27	1.2	1.1	0.21	0.14	0.14
APR 11 MAY	27 48	14 16	0.2 0.2	13 11	0.02 0.02	5.4 4.7	0.27 <0.01	1.2 0.60	1.1 0.60	0.21 0.03	0.14 0.02	0.14 <0.01

05346000 VERMILLION RIVER AT HASTINGS, MN

ľ	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
F	EB 07	1400		709	8.0	0.0	14.3	62		68	23	51	4.6
ΑÏ	PR	1400		70 9	0.0	0.0	14.5	02		00	23	31	4.0
MA	11	1230		742	8.4	7.5	12.7	90	100	80	27	44	3.0
PIE	17	1315	93	650	8.1	14.0	9.2	1700	1500	77	25	30	3.2
r	DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
FE	07	34	83	0.3	15	0.03	6.5	0.10	1.1	0.70	0.93	0.89	0.83
AF	11	45	77	0.3	13	0.02	5.3	<0.01	0.90	0.90	0.59	0.54	0.54
MA	17	34	51	0.3	14	0.07	5.6	0.07	1.3	1.0	0.44	0.37	0.36


05376500 SOUTH FORK WHITEWATER RIVER NEAR ALTURA, MN

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
MAR			
23	1211	4.0	582
23	1721	3.5	75 7
APR			
29	1120	13.0	1880
29	1710	15.0	1670
30	0900	11.5	733
MAY	• • • • •		
16	1815	17.0	4530
16	1938	17.0	1250
JUN	1900	17.0	1230
	1050		0000
15	1253		2080
JUL			
21	2235	21.0	3870
30	1331	18.0	89

Ground-water Levels

May, 1967

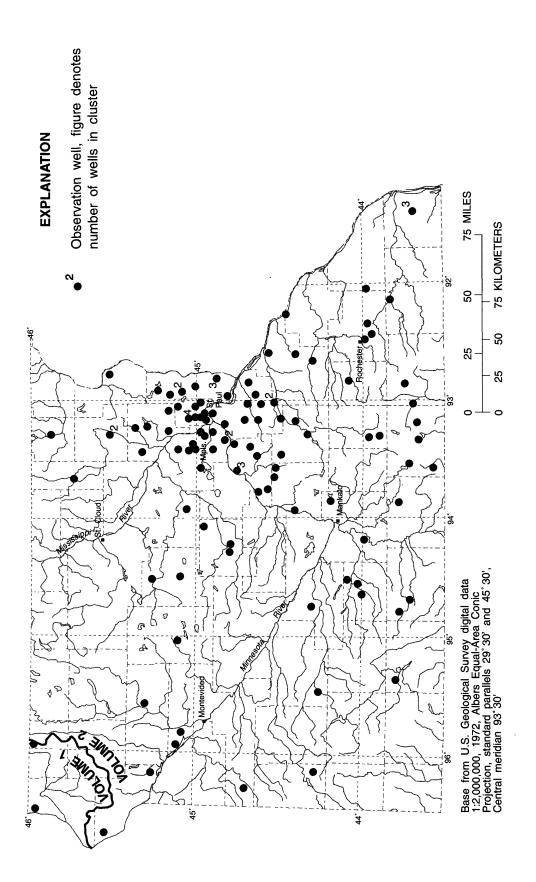


Figure 10.--Location of ground-water wells

ANOKA COUNTY

450927093033802. Local number, 031N22W23CBC02. LOCATION.--Lat 45°09'27", long 93°03'38", in SWkNWkSWk sec.23, T.31 N., R.22 W., Hydrologic Unit 07010206, at city of Centerville.

city of Centerville.

Owner: U.S. Geological Survey.

AQUIFER.--Jordan Sandstone of Late Cembrian Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in., depth 277 ft, screened 272 to 277 ft.

DATUM.--Land-surface datum is 901.6 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.20 ft above land-surface datum.

REMARKS.--Water level affected by nearby flowing wells.

PERIOD OF RECORD. --February 1971 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.10 ft below land-surface datum, July 5, 1975; lowest, 18.57 ft below land-surface datum, Oct. 2, 1989.

WATER LEVEL. IN FEET BELOW LAND-SURFACE DATAUM. WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 5	12.32	Dec 5	12.31	Feb 5	12.58	Apr 5	12.35	Jun 5	11.11	Aug 5	11.33
10	12.40	10	12.38	10	12.64	10	11.96	10	11.18	10	11.23
15	12.33	15	12.56	15	12.57	15	11.67	15	11.05	15	11.44
20	12.22	20	12.52	20	12.62	20	11.78	20	11.23	20	11.37
25	12.40	25	12.40	25	12.62	25	11.74	25	11.24	25	11.36
31	12.30	31	12.49	28	14.49	30	11.85	30	11.48	31	11. 6 8
Nov 5	12.19	Jan 5	12.64	Mar 5	14.96	May 5	11.46	Jul 5	11.27	Sep 5	11.43
10	12.26	10	12.54	10	15.09	10	11.30	10	11.31	10	11.22
15	12.26	15	12.48	15	15.17	15	11.29	15	11.44	15	10.86
20	12.26	20	12.60	20	14.95	20	11.27	20	11.50	20	10.96
25	12.45	25	12.59	25	14.75	25	11.24	25	11.47	25	10.84
30	12.38	31	12.65	31	14.68	31	10.94	31	11.40	30	10.91

451210093170201. Local number, 031N24W01CBB01.
LOCATION.--Lat 45°12'10", long 93°17'02", in NWkNWkSWk sec.1, T.31 N., R.24 W., Hydrologic Unit 07010206, at Colorse.

Owner: City of Coon Rapids.

AQUIFER.--Buried sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 12 in., depth 193 ft, screened 163 to

DATUM) -- Altitude of land-surface datum is 897 ft. Measuring point: Top of breather pipe, 2.00 ft above land-surface datum.

PERIOD OF RECORD. --December 1980 to current year.

EXTREMES FOR FERIOD OF RECORD. --Highest water level, 18.43 ft below land-surface datum, May 13, 1986; lowest, 41.10 ft below land-surface datum, Sept. 21, 1989.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

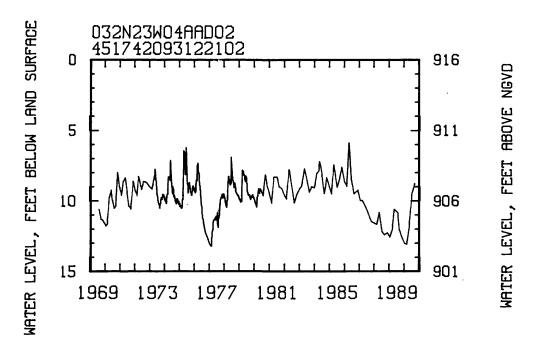
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Dec 04	25.17	Jan 16	25.10	Mer 11	25.43	Sep 17	24.45

451742093122102. Local number, 032N23W04AAD02. LOCATION.--Lat 45°17'42", long 93°12'21", in SE\nE\nE\sec.4, T.32 N., R.23 W., Hydrologic Unit 07030005, 1.5 mi east of Soderville.

Owner: U.S. Geological Survey.

AQUIFER.--Surficial outwash sand of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 2 in., depth 21 ft, screened 19 to 21 ft.


DATUM. --Altitude of land-surface datum is 916 ft. Measuring point: Top of casing, 3.50 ft above land-

surface datum.

PERIOD OF RECORD. -- August 1969 to current year.

EXTREMES FOR FERIOD OF RECORD. --Highest water level, 5.82 ft below land-surface datum, May 13, 1986; lowest, 13.22 ft below land-surface datum, Mar. 5-9, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Dec 04	10.03	Mar 11	10.66	Jul 22	7.63
Jan 16	10.45	May 16	7.34	Sep 17	7.44

452305093141501. Local number, 033N23W05BAB01.
LOCATION.--Lat 45°23'05", long 93°14'15", in NW&NE&NW& sec.5, T.33 N., R.23 W., Hydrologic Unit 07010207, at 1300 229th Ave. NE, Bethel.

Owner: Friendship Baptist Church. AQUIFER. --Franconian Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS. --Drilled domestic artesian well, diameter 4 in., depth 141 ft, cased to 126 ft.
DATUM. --Altitude of land-surface datum is 923 ft. Measuring point: Top of well cap, 0.80 ft above land-surface datum. PERIOD OF RECORD. --April 1980 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, REMES FOR PERIOD OF RECORD. --Highest water level, 19.45 ft below land-surface datum, July 10, 1986; lowest, 23.11 ft below land-surface datum, Mar. 13, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Dec 04	21.87	Mer 11	22.39	Jul 22	20.22
Jan 16	22.10	Mey 16	21.58	Sep 17	19.62

451938093223101. Local number, 033N24W30ABB01.
LOCATION.--Lat 45°19'38", long 93°22'31", in NWkNWkNEk sec.30, T.33 N., R.24 W., Hydrologic Unit 07010207, at 4324 Viking Blvd.

Owner: Northwestern Bell Telephone Co.

AQUIFER.--Ironton-Galesville Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 4 in., depth 280 ft, cased to 223 ft.

DATUM.--Altitude of land-surface datum is 900 ft. Measuring point: Top of casing, 1.50 ft above land-

surface datum.

PERIOD OF RECORD.--April 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 26.64 ft below land-surface datum, Mey 13, 1986;

lowest, 32.93 ft below land-surface datum, Oct. 31, 1989.

DATE	WATER LEVEL DATE		WATER LEVEL	DATE	WATER LEVEL	
Dec 04	30.75 30.77	Mar 11	31.05	Jul 22	28.83	

BELTRAMI COUNTY

473023094570901. Local number, 147N34W35ADC01.

LOCATION.--Lat 47°30'23", long 94°57'09", in SW&SE&NE% sec.35, T.147 N., R.34 W., Hydrologic Unit 07010101, on Clarence Hart farm.

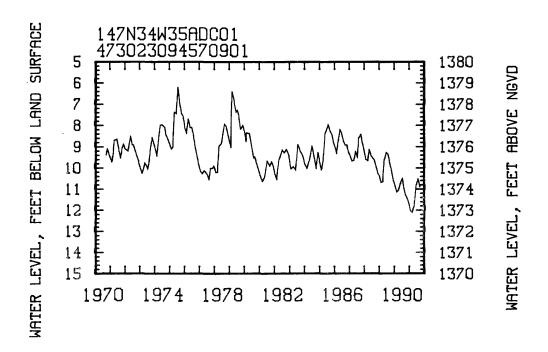
Owner: U.S. Geological Survey.

AQUIFER.--Surficial outwash sand of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in., depth 20 ft, screened 18 to

20 ft.

DATUM.--Altitude of land-surface datum is 1,383 ftm. Measuring point: Top of casing, 3.00 ft above land-


surface datum.

PERIOD OF RECORD. --October 1970 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 6.17 ft below land-surface datum, Aug. 1, 1975; lowest, 12.11 ft below land-surface datum, Mar. 11, 1991.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 01	11.28 11.39	Dec 11 Jan 28	11.59 12.02	Mar 11	12.11 11.69	Jun 27	10.79 10.50	Sep 17	10.87

BIG STONE COUNTY

451517096104501. Local number, 121N44W27CCC01. LOCATION.--Lat 45°15'17", long 96°10'45", in SWkSWkSWk sec.27, T.121 N., R.44 W., Hydrologic Unit 07010001, north of Correll.

Owner: U.S. Geological Survey

AQUIFER. --Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS. --Bored observation water-table well, diameter 1% in., depth 16 ft, screened 14 to

DATUM. --Altitude of land-surface datum is 1,018 ft. Measuring point: Top of casing, 3.10 ft above land-surface datum.

PERIOD OF RECORD. -- September 1972 to February 1974, August 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 2.16 ft below land-surface datum, June 12, 1986; lowest, 8.99 ft below land-surface datum, Feb. 8, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 16	7.78	Jan 18	8.07	Apr 12	8.10	Jul 24	6.22

BIG STONE COUNTY--Continued

453330096420201.

453330096420201. Local number, 124N48W17AAA01. LOCATION.--Lat 45°33'30", long 96°42'02", in NE\nE\nE\sec.17, T.124 N., R.48 W., Hydrologic Unit 07020001, 0.5 mi east of Beardsley.

Owner: U.S. Geological Survey.

AQUIFER.--Buried sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in., depth 282 ft, screened 242 to 282 ft.

DATUM.--Altitude of land-surface datum is 1,086.8 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.60 ft above land-surface datum.

PERIOD OF RECORD.--November 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 9.77 ft below land-surface datum, Mar. 23, 1987; lowest, 22.10 ft below land-surface datum, July 21, 1988.

DATE

WATER

LEVEL

DATE

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

WATER

LEVEL

DATE

1990

WATER LEVEL

		Oct 15 Dec 11	16.23 16.13	Feb 12 May 29	16.23 16.61	Jul 24 Sep 10	20.45 16.80	
BELOW LAND SURFACE	. 5	124N48W1 45333009	78880 64202	1 101				1081.8
SUF	<i>ل</i> ،	- 1 1 1	1 1	1 1 1	1 1	1 1	' -	NGVD
LAND	10	Ē,			\cap		1	1076.8 3 1080 1076.8 3
SLOW	15				11) _/ _	1	
	12	E Y	Λ^{μ}	1	γ γ	V V	7]	1071.8 L
EVEL, FEET	20	Ļ	\ \ \	/ V		\	V <u>-</u>	1066.8 E 8.8801
ÆL,		Ė	•			ľ	1	LE
र्ष	25			444				1061.8 兴

BLUE EARTH COUNTY

440050094102801. Local number, 106N28W03DBA01. LOCATION.--Lat 44°00'50", long 94°10'28", in NE\NW\SE\ sec.3, T.106 N., R.28 W., Hydrologic Unit 07020010, at Farmland Industries Ammonia Plant, 3.2 mi north of Vernon Center.

1978 1981 1984 1987

Owner: Farmland Industries Ammonia Flant, 5.2 ml noth of volume.

Owner: Farmland Industries.

AQUIFER.--Ironton-Galesville Sandstones of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 16 in., depth 390 ft, cased to 150 ft.

DATUM.--Altitude of land-surface datum is 1,005 ft. Measuring point: Top of recorder floor, 2.00 ft

above land-surface datum.

PERIOD OF RECORD. --October 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 71.81 ft below land-surface datum, Apr. 26, 1983; lowest, 76.73 ft below land-surface datum, Oct. 18, 1989.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATAUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 20 Jan 31 Feb 05 10 15 20 25 28	75.46 75.88 75.88 75.91 75.93 75.73 75.96 75.65	Mar 05 10 15 20 25 May 29 Jul 25 31	75.37 75.72 75.76 75.49 75.43 74.29 74.10	Aug 05 10 15 20 25 31	74.37 74.18 74.01 74.06 74.14 74.32	Sep 05 10 15 20 25 30	74.31 74.43 74.13 74.48 74.27 74.40

BLUE EARTH COUNTY--Continued

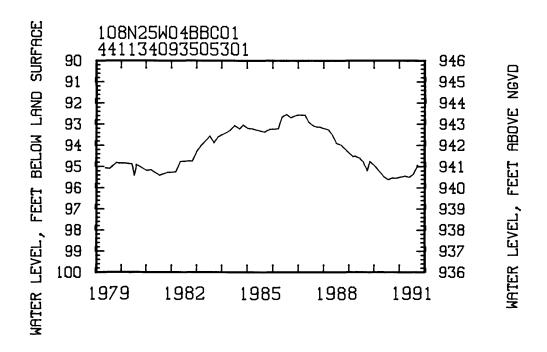
441134093505301. Local number, 108N25W04BBC01.
LOCATION.--Lat 44°11'34", long 93°50'53", in SWkNWkNWk sec.4, T.108 N., R.25 W., Hydrologic Unit 07020011, at 1.3 mi west of Madison Lake at waste treatment plant.

at 1.3 mi west of Madison Lake at waste treatment plant.

Owner: City of Madison Lake.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in., depth 313 ft, cased to 296 ft.


DATUM.--Altitude of land-surface datum is 1,036 ft. Measuring point: Top of casing, 1.60 ft above land-surface datum.

PERIOD OF RECORD.--May 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 92.52 ft below land-surface datum, July 17, 1986; lowest, 95.62 ft below land-surface datum, July 25, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 20 Mar 26	95.55 95.43	May 29 Jul 24	95.51 95.34	Sep 25	94.94

BROWN COUNTY

441800094434301. Local number, 110N32W30DDB01.
LOCATION.--Lat 44°18'00", long 94°43'43", in NW\se\se\sec.30, T.110 N., R.32 W., Hydrologic Unit 07020008, in Sleepy Eye at hospital.

Owner: City of Sleepy Eye.
AQUIFER.--Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in., depth 176 ft.
DATUM.--Altitude of land-surface datum is 1,030 ft. Measuring point: Top of casing, 1.30 ft above land-

surface datum.

REMARKS.--Water level affected by pumping from nearby wells.
PERIOD OF RECORD.--August 1976 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 46.80 ft below land-surface datum, Apr. 1, 1987; lowest, 118.1 ft below land-surface datum, Sept. 15, 1976.

WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 01 Nov 01 Dec 01 Jan 02	62.20 57.70 54.70 54.70	Feb 04 Mar 01 26 Apr 01	52.90 52.00 51.46 51.70	May 01 Jun 06 Jul 01 Aug 01 Sep 03	50.90 52.10 52.70 56.10 59.70

CHIPPEWA COUNTY

450447095490101. Local number, 119N41W29DDD01.
LOCATION.--Lat 45°04'47", long 95°40'01", in SE\SE\SE\sec.29, T.119 N., R.41 W., Hydrologic Unit 07020005,
5 mi north of Watson.

Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in., depth 19 ft, screened 17 to

DATUM .-- Altitude of land-surface datum is 992 ft. Measuring point: Top of casing, 3.75 ft above landsurface datum.

PERIOD OF RECORD. --September 1972 to February 1974, January 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 3.43 ft below land-surface datum, Apr. 10, 1984; lowest, 9.06 ft below land-surface datum, Feb. 8, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 11	4.90	Apr 12	3.85	Jun 21	3.98	Sep 04	4.74

450631095562201. Local number, 119N42W17DDD01. LOCATION.--Lat 45°06'31", long 95°56'22", in SE\SE\SE\ sec.17, T.119 N., R.42 W., Hydrologic Unit 07020001, west of Milan.

Owner: U.S. Geological Survey.

AQUIFER.--Surficial silt of Pleistocene Age.

WELL CHARACTERISTICS. -- Bored observation water-table well, diameter 11 in., depth 19 ft, screened 17 to

DATUM. --Altitude of land-surface datum is 1,027 ft. Measuring point: Top of casing, 4.50 ft above landsurface datum.

PERIOD OF RECORD. -- September 1972 to October 1973, April 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 1.50 ft below land-surface datum, May 7, 1973; lowest, 17.46 ft below land-surface datum, Apr. 1, 1977.

DATE	WATER LEVEL DATE		WATER LEVEL	DATE	WATER LEVEL	
Oct 11	5.80	Jan 18	8.72	Jun 28	2.58	
Nov 07	9.70	Apr 12	4.97	Sep 04	4.45	

CHISAGO COUNTY

453125092445401. Local number, 035N19W17BDB01.
LOCATION.--Lat 45°31'25", long 92°44'54", in NWkSEkNWk sec.17, T.35 N., R.19 W., Hydrologic Unit 07030005, at Wild River State Park.

Owner: State of Minnesota.
AOUIFER.--Mount State State of Minnesota.

AQUIFER. --Mount Simon Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS. --Drilled domestic artesian well, diameter 6 in., depth 270 ft, cased 230 ft.
DATUM. --Altitude of land-surface datum is 820 ft. Measuring point: Top of casing, 0.70 ft above landsurface datum.

PERIOD OF RECORD. --October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 40.06 ft below land-surface datum, Oct. 20, 1986; lowest, 44.19 ft below land-surface datum, June 8, 1983.

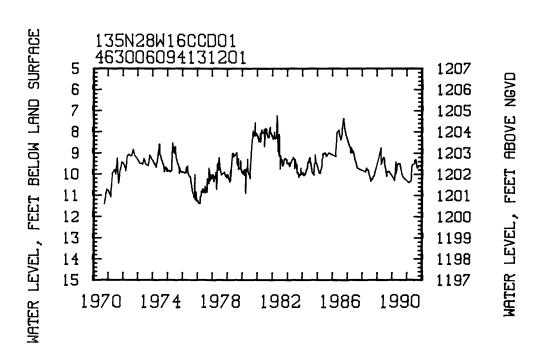
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL
Aug 02	41.75	Sep 30	41.80

CROW WING COUNTY

463006094131201. Local number, 135N28W16CCD01.
LOCATION.--Lat 46°30'06", long 94°13'12", in SELSWLSWL sec.16, T.135 N., R.28 W., Hydrologic Unit 07010106, northwest of Merrifield.

mer: U.S. Geological Survey.
--Surficial sand of Pleistocene Age. Owner: WELL CHARACTERISTICS. -- Bored observation water-table well, diameter 1% in., depth 18 ft, screened 16 to 18 ft.


DATUM. --Altitude of land-surface datum is 1,212 ft. Measuring point: Top of casing, 2.00 ft above land-

surface datum. PERIOD OF RECORD. --October 1970 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 7.20 ft below land-surface datum, May 1, 1982; lowest, 11.38 ft below land-surface datum, Oct. 16, 1970, Feb. 11, 1977, Mar. 11, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DAT	Œ	Water Level	DA:	ΓE	WATER LEVEL	DA:	TE.	WATER LEVEL
Jan Feb Apr		10.38 10.40 10.32 10.19 10.08	May Jul	03 06 14 02 11 17 26	9.89 9.78 9.54 9.48 9.34 9.32	Aug Sep	01 06 22 26 06 12 20 25	9.29 9.33 9.55 9.59 9.70 9.68 9.67 9.68

DAKOTA COUNTY

445044093102401. Local number, 027N23W09ABD01.
LOCATION.--Lat 44°50'44", long 93°10'24", in SE\nW\nE\sec.9, T.27 N., R.23 W., Hydrologic Unit 07020012, at Eagan.

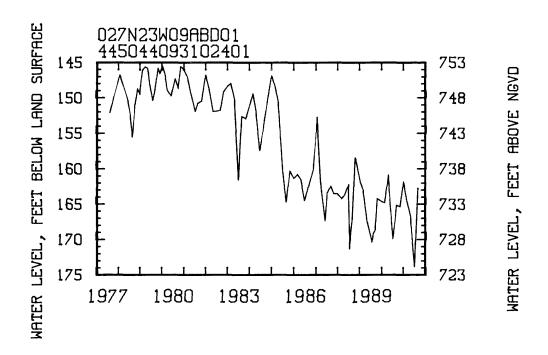
Owner: City of Eagan, Timberline Addition.

AQUIFER.--Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled public-supply artesian well, diameter 10 in., depth 503 ft, cased to

WELL CHARACTERISTICS. --Drifted public supply discrete A01 ft.

DATUM. --Altitude of land-surface datum is 900 ft. Measuring point: Hole in well cap, 2.60 ft above land-surface datum.


REMARKS. --Water-level affected by pumping.

PERIOD OF RECORD. --December 1965, April 1966, December 1966, March 1967, December 1970, August 1971, August 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 141.40 ft below land-surface datum, Apr. 5, 1966; lowest, 173.87 ft below land-surface datum, July 17, 1991.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 13	165.38	Mar 06	164.57	Jul 17	173.87
Jan 08	161.80	May 08	166.80	Sep 13	162.76

DAKOTA COUNTY--Continued

445330093054301. Local number, 028N22W19DCC02.
LOCATION.--Lat 44°53'30", long 93°05'43", in SWkSWkSEk sec.19, T.28 N., R.22 W., Hydrologic Unit 07010206, in West St. Paul.

Owner: U.S. Geological Survey, 2-N.
AQUIFER.--Prairie du Chien Group of Early Ordovician Age.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 539 ft, cased to 407 ft.
DATUM.--Land-surface datum is 1,036 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.60 ft above land-surface datum.
REMARKS.--Water-level affected by regional pumping.
PERIOD OF RECORD.--January 1971 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 309.13 ft below land-surface datum, Apr. 4, 1988; lowest, 328.0 ft below land-surface datum, July 31, 1975.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

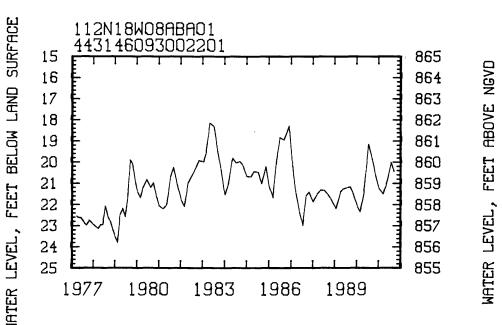
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 05 10 15 20 25 31 Nov 05 10 15 20 25 30	313.61 313.24 312.50 311.43 312.13 311.64 311.19 310.99 311.10 310.94 310.75 310.92	Dec 05 10 15 20 25 31 Jan 05 10 15 20	310.88 310.76 310.84 310.85 310.85 310.51 310.44 311.10 310.28 310.19	Mar 10 15 20 25 31 Apr 05 10 15 20 25 30	310.54 310.84 310.48 309.99 310.53 311.64 312.75 310.65 310.92 312.46 311.36	May 05 10 15 20 25 31 Jun 05	310.32 311.62 313.41 312.31 313.95 314.39 315.87	Jul 20 25 31 Aug 05 10 15 20 25 31	316.32 317.73 315.71 314.12 314.40 318.21 316.86 315.25 318.03	Sep 05 10 15 20 25 30	317.24 314.67 313.80 312.36 311.53 312.05

443146093002201. Local number, 112N18W08ABA01.
LOCATION.--Lat 44°31'46", long 93°00'22", in NE\nw\ne\ sec.8, T.112 N., R.18 W., Hydrologic Unit 07040002, northeast of Randolph.

Owner: U.S. Geological Survey
AQUIFER.--Surficial outwash sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1k in., depth 44 ft, screened 42 to

44 ft.

DATUM. --Altitude of land-surface datum is 880 ft. Measuring point: Top of casing, 3.40 ft above land-


Surface datum.

PERIOD OF RECORD. --April 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 18.13 f lowest, 23.80 ft below land-surface datum, Feb. 21, 1979. 18.13 ft below land-surface datum, May 3, 1983;

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 09	20.59	Mar 12	21.51	Jul 26	20.00
Jan 09	21.24	May 09	21.08	Sep 12	20.43

DAKOTA COUNTY--Continued

443134093010601. Local number, 112N18W08BBC01.
LOCATION.--Lat 44°31'34", long 93°01'06", in SWkNWkNWk sec.8, T.112 N., R.18 W., Hydrologic Unit 07040002, at Randolph Fire Station.

Owner: City of Randolph.
AQUIFER.--Prairie du Chien Group of Early Ordovician Age.
WELL CHARACTERISTICS.--Drilled fire protection artesian well, diameter 10 in., depth 150 ft, cased

DATUM. -- Altitude of land-surface datum is 883 ft. Measuring point: Top of 3/4-inch breather pipe,

2.20 ft above land-surface datum.

PERIOD OF RECORD. --July 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 10.47 ft below land-surface datum, May 3, 1983; lowest, 19.70 ft below land-surface datum, Aug. 11, 1977.

WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 09	14.53	Mar 12	14.72	Jul 26	18.07
Jan 09	14.89	May 09	14.28	Sep 12	15.19

442830093085201. Local number, 112N19W30DBD01.
LOCATION.--Lat 44°28'30", long 93°08'52", in SE\NW\SE\ sec.30, T.112 N., R.19 W., Hydrologic Unit 07040002, at Northfield waste treatment plant.
Owner: City of Northfield.
AQUIFER.--Jordan Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in., depth 275 ft, cased to 212 ft.
DATUM.--Altitude of land-surface datum is 890 ft. Measuring point: Center of pressure guage, 2.05 ft

above land-surface datum.

PERIOD OF RECORD. -- May 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 18.54 ft above land-surface datum, July 12, 1983; lowest, 6.66 ft above land-surface datum, Mar. 12, 1991.

WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL DATE		WATER LEVEL	DATE	WATER LEVEL	
Nov 09	+7.81	Mar 12	+6.66	Jul 26	+8.38	
Jan 15	+7.12	May 09	+8.50	Sep 18	+8.04	

443645093014701. Local number, 113N18W07BAC01.
LOCATION.--Lat 44°36'45", long 93°01'47", in SWkNEkNWk sec.7, T.113 N., R.18 W., Hydrologic Unit 07040001, west of Hampton.
Owner: Eugene Dohmen.

AQUIFER. --Frairie du Chien Group of Early Ordovician Age and Jordan Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS. --Drilled irrigation artesian well, diameter 16 in., depth 325 ft, cased to 65 ft.
DATUM. --Altitude of land-surface datum is 915 ft. Measuring point: Hole in pump base, 1.60 ft above land-surface datum.

PERIOD OF RECORD. --April 1977 to August 1977, January 1978, June 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 23.15 ft below land-surface datum, Dec. 4, 1986; lowest, 33.19 ft below land-surface datum, Aug. 12, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 09 Jan 15	30.42 30.82	Mar 12 May 09	31.06 30.85	Sep 12	31.78

DAKOTA COUNTY--Continued

444205092500001. Local number, 114N17W10AAA01. LOCATION.--Lat 44°42'05", long 92°50'00", in NEWNEWNEW sec.10, T.114 N., R.17 W., Hydrologic Unit 07040001, southeast of Hastings.

Owner: John Conzemius.

AQUIFER. --Prairie du Chien Group of Early Ordovician Age.
WELL CHARACTERISTICS. --Drilled unused artesian well, diameter 4 in., depth 151 ft, depth of casing unknown.
DATUM. --Altitude of land-surface datum is 827 ft. Measuring point: Top of platform, 2.50 ft above land-

surface datum.

PERIOD OF RECORD. --April 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 94.10 ft below land-surface datum, Mar. 31, 1987; lowest, 107.4 ft below land-surface datum, Mar. 12, 1978.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATAUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	Water Level	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	Water Level	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 05 10 15 20 25 31 Nov 05 10 15 20 25 30	101.87 101.94 102.00 101.88 102.03 101.90 101.86 102.00 101.89 101.88 102.05 101.92	Dec 05 10 15 20 25 31 Jan 05 10 15 20 25 31	101.90 102.03 101.99 102.09 102.17 102.06 102.07 102.11 102.05 102.23 102.27	Feb 05 10 15 20 25 28 Mar 05 10 15 20 25 31	102.18 102.17 102.31 102.30 102.04 101.95 102.35 102.33 102.09 102.32	Apr 05 10 15 20 25 30 May 05 10 15 20 25 31	102.15 102.36 102.19 102.34 102.26 102.33 102.33 102.40 102.32 102.36 102.28	Jun 05 10 15 20 25 30 Jul 05 10 15 20	102.41 102.28 102.41 102.52 102.38 103.07 102.76 103.18 103.06 103.30	Sep 15 20 25 30	103.28 103.47 103.29 103.39

444047092521901. Local number, 114N17W16CBB01.
LOCATION.--Lat 44°40'47", long 92°52'19", in NWkNWkSWk sec.16, T.114 N., R.17 W., Hyrologic Unit 07040001, Kirby Avenue, 0.5 mi (0.8 km) north of 190th Street.
Owner: Jim Huneke Construction Company.
AQUIFER.--Surficial sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled domestic water-table well, diameter 4 in., depth 170 ft, screened 164 to

170 ft.

DATUM .-- Altitude of land-surface datum is 823 ft. Measuring point: Top of casing, 1.10 ft above landsurface datum.

PERIOD OF RECORD. --March 1976, March 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 73.32 ft below land-surface datum, Mar. 31, 1987; lowest, 87.75 ft below land-surface datum, June 27, 1978.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	water Level	DATE	WATER LEVEL
Nov 07	82.75	Mar 05	82.10	Jul 26	84.05
Jan 09	82.25	May 07	82.45	Sep 12	84.82

443827092521801. Local number, 114N17W33BBC01. LOCATION.--Lat 44°38'27", long 92°52'18", in SWkNWkNWk sec.33, T.114 N., R.17 W., Hydrologic Unit 07040001, 39 ft south of irrigation well.

Owner: Rainer Kimmes.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 16 in., depth 290 ft, cased to 25 ft.

DATUM.--Altitude of land-surface datum is 862 ft. Measuring point: Hole in plate over well, 2.00 ft

above land-surface datum.

PERIOD OF RECORD. --August 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 46.14 ft below land-surface datum, Dec. 1, 1986; lowest, 79.20 ft below land-surface datum, July 11, 1985.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 09	66.19	Mar 05	66.14	Jul 26	72.22
Jan 09	66.27	May 07	67.35	Sep 12	71.92

DAKOTA COUNTY--Continued

444117092595701. Local number, 114N18W17AAB01. LOCATION.--Lat 44°41'17", long 92°59'57", in NWanEanea sec.17, T.114 N., R.18 W., Hydrologic Unit 07040001, 180th Street, 0.25 mi west of Emery Avenue.

Owner: Joe Ries.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age and Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 16 in., depth 280 ft, cased to 39 ft.

DATUM.--Altitude of land-surface datum is 905 ft. Measuring point: Edge of vent pipe, 1.40 ft above land-surface datum.

PERIOD OF RECORD. -- June 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 57.30 ft below land-surface datum, Dec. 1, 1986; lowest, 74.15 ft below land-surface datum, Sept. 13, 1988.

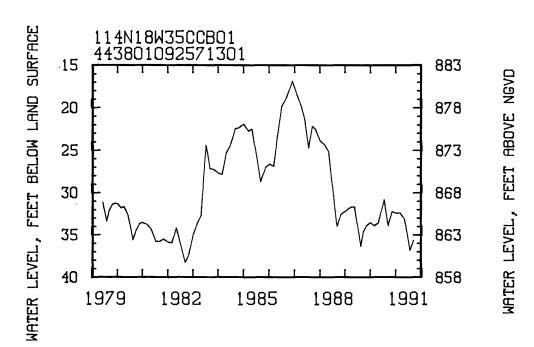
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 09	72.72	Mar 12	73.92	May 09	73.03	Sep 18	71.15

443801092571301. Local number, 114W18W35CCB01.
LOCATION.--Lat 44°38'01", long 92°57'13", in NW4SW4SW4 sec.35, T.114 N., R.18 W., Hydrologic Unit 07040001, Goodwin Avenue, 1.1 mi (1.8 km) south of Northfield Boulevard.

Owner: Al Wagner, Jr.
AQUIFER.--Buried gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Driled irrigation artesian well, diameter 12 in., depth 203 ft, screened 173 to

203 ft.


DATUM.--Altitude of land-surface datum is 898 ft. Measuring point: Hole in pump base, 1.25 ft above land-surface datum.

PERIOD OF RECORD.--June 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 16.83 ft below land-surface datum, Dec. 1, 1986; lowest, 38.28 ft below land-surface datum, Sept. 13, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 09	32.18	Mar 05	32.34	Jul 26	36.81
Jan 09	32.41	May 09	33.12	Sep 12	35.67

DAKOTA COUNTY--Continued

444220093055001. Local number, 114N19W04DAC01.
LOCATION.--Lat 44°42'20", long 93°05'50", in SWkNEkSEk sec.4, T.114 N., R.19 W., Hydrologic Unit 07040001, 2.1 mi southeast of Rosemount.

Owner: University of Minnesota Agricultural Experiment Station (Plant Pathology).

AQUIFER.--Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 6 in., depth 415 ft, cased to 355 ft.

DATUM.--Altitude of land-surface datum is 947 ft. Measuring point: Top of 1-inch breather pipe, 2.10 ft

above land-surface datum.

PERIOD OF RECORD. -- August 1970 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 55.36 ft below land-surface datum, Dec. 1, 1986; lowest, 65.23 ft below land-surface datum, Nov. 27, 1970.

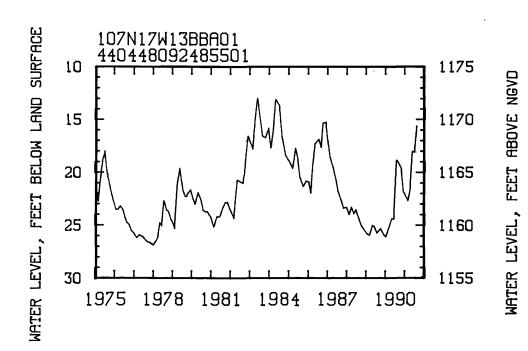
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 09	60.71	Mar 06	61.32	Jul 26	61.97
Jan 15	61.02	May 09	61.27	Sep 19	61.78

DODGE COUNTY

440448092485501. Local number, 107N17W13BBA01.
LOCATION.--Lat 44°04'48", long 92°48'55", in NE\nW\nW\n sec.13, T.107 N., R.17 W., Hydrologic Unit 07040004, in city of Wasioja.

Owner: Wasioja Township Garage.
AQUIFER.--Galena Formation of Middle Ordovician Age.
WELL CHARACTERISTICS.--Drilled maintenance artesian well, diameter 6 in., depth 100 ft, cased to 52 ft.
DATUM.--Altitude of land-surface datum is 1,185 ft. Measuring point: Top of casing, 1.60 ft above


land-surface datum.

PERIOD OF RECORD.--January 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.94 ft below land-surface datum, May 23, 1983; lowest, 26.88 ft below land-surface datum, Jan. 5, 1978.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 30 Dec 13	19.64 21.87	Mar 04 Apr 17	22.68 21.53	May 29 Jul 08	17.97 18.10	Aug 19	15.64

FARIBAULT COUNTY

434558093540001. Local number, 104N26W36CAC01. LOCATION.--Lat 43°45'58", long 93°54'00", in SWkNEkSWk sec.36, T.104 N., R.26 W., Hydrologic Unit 07020011,

at Easton Creamery.

Owner: City of Easton.

AQUIFER.--Platteville Formation of Middle Ordovician Age.

WELL CHARACTERISTICS.--Drilled public supply artesian well, diameter 8 in., depth 145 ft, cased to 120 ft.

DATUM.--Altitude of land-surface datum is 1,060 ft. Measuring point: Top of well cap, 1.20 ft above

land-surface datum.

PERIOD OF RECORD. -- August 1979, April 1980, May 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 29.97 ft below land-surface datum, May 10, 1983; lowest, 36.36 ft below land-surface datum, Aug. 2, 1989.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	Water Level
Nov 19 Jan 30	34.65 32.22	Mar 25 Jul 23	34.00 32.08	Sep 24	31.30

FILLMORE COUNTY

434936092102201. Local number, 104N11W08ADC01. LOCATION.--Lat 43°49'36", long 92°10'22", in SWkSEkNEk sec.8, T.104 N., R.11 W., Hydrologic Unit 07040008, 0.8 mi southeast of Chatfield.

Owner: Fillmore County Highway Department.

AQUIFER.--Prairie du Chien group of early Ordovician age and Jordan sandstone of late Cambrian age.

WELL CHARACTERISTICS.--Drilled domestic water table well, diameter 4 in., depth 284 ft, cased to 128 ft.

DATUM.--Altitude of land-surface datum is 981 ft. Measuring point: Top of casing, 0.50 ft above landsurface datum.

PERIOD OF RECORD. --November 1989 to September 1990.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 28.73 ft below land-surface datum, May 7, 1991; lowest, 38.51 ft below land-surface date, Feb. 6, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Dec 05	33.64	Mar 05	35.40	Aug 01	31.14	
Jan 09	34.81	May 07	28.73	Sep 12	32.44	

FREEBORN COUNTY

433434093331201. Local number, 101N23W02DAC01. LOCATION.--Lat 43°34'34", long 93°33'12", in SWkNEkSEk sec.2, T.101 N., R.23 W., Hydrologic Unit 07080203, 3 mi southwest of Conger.

Owner: Richard Steele

AQUIFER. --Upper Carbonates of Devonian and Ordovician Age.
WELL CHARACTERISTICS. --Drilled irrigation artesian well, diameter 16 in., depth 373 ft (114 m), cased to 156 ft.

DATUM .-- Altitude of land-surface datum is 1,280 ft. Measuring point: Vent pipe, 1.50 ft above landsurface datum.

PERIOD OF RECORD. --July 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 65.58 ft below land-surface datum, Mar. 8, 1983; lowest, 75.45 ft below land-surface datum, Aug. 2, 1989.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 19	67.55	Mar 25	68.25	Jul 23	70.16
Jan 30	68.22	May 28	67.52	Sep 24	68.52

FREEBORN COUNTY--Continued

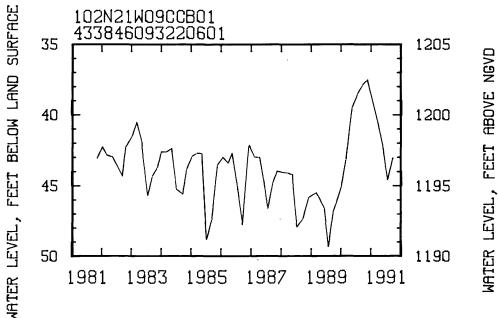
433846093220601. Local number, 102N21W09CCB01. LOCATION.--Lat 43°38'46", long 93°22'06", in NW\sW\sW\sw\sw. sec.9, T.102 N., R.21 W., Hydrologic Unit 07080202, at Freeborn_County Courthouse.

Owner: Freeborn County.

AQUIFER.--Cedar Valley Formation of Middle Devonian Age.

WELL CHARACTERISTICS.--Drilled public supply artesian well, diameter 5 in., depth 150 ft, cased to

138 ft.
DATUM. --Altitude of land-surface datum is 1,240 ft. Measuring point: Top of casing, 1.00 ft above


land-surface datum.

PERIOD OF RECORD. --November 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 37.50 ft below land-surface datum, Nov. 19, 1990; lowest, 49.32 ft below land-surface datum, Aug. 2, 1989.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
Nov 19 Mar 25	37.50 40.51	May 28 Jul 23	42.30 44.59	Sep 24	43.05
102N21W	09CCB	01			

434032093111801. Local number, 103N20W36CCB01.
LOCATION.--Lat 43°40'32", long 93°11'18", in NE\sW\sW\s sec.36, T.103 N., R.20 W., Hydrologic Unit 07080201, at Fillsbury Grain Station.

Owner: Pillsbury Co.
AQUIFER.--Cedar Valley Formation of Middle Devonian Age.
WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 5 in., depth 231 ft, cased to 136 ft.
DATUM.--Altitude of land-surface datum is 1,255 ft. Measuring point: Top of casing, 1.80 ft above

land-surface datum.

PERIOD OF RECORD.--July 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 48.40 ft below land-surface datum, May 10, 1984; lowest, 55.95 ft below land-surface datum, July 13, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 19	49.62	Mar 25	50.37	Jul 23	50.84
Jan 30	50.32	May 28	48.96	Sep 24	50.60

FREEBORN COUNTY--Continued

434308093322001. Local number, 103N23W13CDA01.
LOCATION.--Lat 43°43'08", long 93°32'20", in NE4SE4SWk sec.13, T.103 N., R.23 W., Hydrologic Unit 07020011, 3.3 mi northeast of Alden.

Owner: Oakview Golf Course.

AQUIFER. --Galena Formation of Middle Ordovician Age.
WELL CHARACTERISTICS. --Drilled irrigation artesian well, diameter 6 in., depth 270 ft, cased to 158 ft.
DATUM. --Altitude of land-surface datum is 1,250 ft. Measuring point: Hole in well cap, 1.90 ft above depth 270 ft, cased to 158 ft. land-surface datum.

PERIOD OF RECORD. -- July 1981 to current year.

EXTREMES FOR FERIOD OF RECORD. -- Highest water level, 42.00 ft below land-surface datum, May 10, 1983; lowest, 48.77 ft below land-surface datum, Aug. 2, 1989.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 19	42.33	Mar 25	43.50	Jul 23	45.03
Jan 30	43.13	May 28	42.90	Sep 24	44.45

GOODHUE COUNTY

441737092400501. Local number, 110N15W31BBD01.
LOCATION.--Lat 44'17'37", long 92°40'05", in SE4NW4NW4 sec.31, T.110 N., R.15 W., Hydrologic Unit 07040004, at Zumbrota Fire Station.

Owner: City of Zumbrota, well 3.

AQUIFER. -- Prairie du Chien Group of Early Ordovician Age.
WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 12 in., depth 210 ft, cased to 50 ft.
DATUM. -- Altitude of land-surface datum is 1,000 ft. Measuring point: Hole in pump base, 2.20 ft

above land-surface datum.

PERIOD OF RECORD. -- June 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 17.38 ft below land-surface datum, Jan 7, 1987;

lowest, 27.00 ft below land-surface datum, Jan. 5, 1978.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 22 Dec 04	23.35 23.04	Jan 14 Feb 25	22.90 23.89	Apr 15 May 20	23.52 22.06	Aug 12	21.39

442401092372501. Local number, 111N15W21CDA01.
LOCATION.--Lat 44°24'01", long 92°37'25", in NE\sE\sW\sec.21, T.111 N., R.15 W., Hydrologic Unit 07040004, in Goodhue clerk's office.

Owner: City of Goodhue, creamery well.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age and Jordan Sandstone of Late Cambrian age.

WELL CHARACTERISTICS.--Drilled public-supply artesian well, diameter 12 in., depth 310 ft, cased to 175 ft.

DATUM. -- Altitude of land-surface datum is 1,125 ft. Measuring point: Top of 1k in elbow, 1.50 ft

above land-surface datum.

PERIOD OF RECCORD.--June 1973 to current year.

EXTREMES FOR PERIOD OF RECCORD.--Highest water level, 119.00 ft below land-surface datum, Feb. 26, 1987; lowest, 156.5 ft below land-surface datum, May 26, 1983.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Oct 22 Dec 04	131.02 130.47	Jan 14 Feb 25	134.63 135.82	Apr 15	135.52	

GOODHUE COUNTY--Continued

443012092362201. Local number, 113N15W27BAB01. LOCATION.--Lat 44*30'12", long 92*26'22", in NWLNELNWL sec.27, T.113 N., R.15 W., Hydrologic Unit 07040002, at Red Wing.

Owner: City of Red Wing, Anderson Park.

AQUIFER.--Eau Claire-Mount Simon Sandstones of Late Cambrian Age.

WELL CHARACTERISTISC.--Drilled unused artesian well, diameter 12 in., depth 560 ft, cased to 243 ft.

DATUM,--Altitud of land-surface datum is 800 ft. Measuring point: Edge of casing, 2.70 ft above land-surface datum.

PERIOD OF RECORD. --April 1976, June 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 100.50 ft below land-surface datum, Apr. 20, 1983; lowest, 109.62 ft below land-surface datum, Sept. 10, 1990.

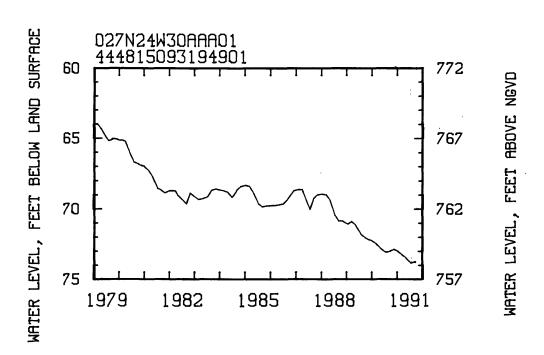
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 22 Dec 04	108.37 107.56	Jan 14 Feb 25	106.59 106.54	Apr 15 May 20	106.29 106.13	Aug 12 Sep 27	107.40 107.05	Sep 30	106.95

HENNEPIN COUNTY

139 ft.

DATUM. --Altitude of land-surface datum is 832 ft. Measuring point: Top of casing, 0.50 ft above land-


surface datum.

PERIOD OF RECORD.--March 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 63.97 ft below land-surface datum, Mar. 2, 1979; lowest, 73.84 ft below land-surface datum, July 19, 1991.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	WATER LEVEL	
Nov 14	72.85 73.00	Mar 07	73.23 73.46	Jul 19 Sep 19	73.84 73.74

HENNEPIN COUNTY--Continued

444801093202801. Local number, 027N24W30BDA01. LOCATION.--Lat 44°48'01", long 93°20'28", in NE&SE&NW& sec.30, T.27 N., R.24 W., Hydrologic Unit 07020012, in

Bloomington.
Owner: City of Bloomington, at Southwood Terrace.
AQUIFER.--Jordan Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, dia WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 12 in., depth 330 ft, cased to 269 ft. DATUM. -- Altitude of land-surface datum is 815 ft. Measuring point: Top of recorder platform, 2.20 ft above

land-surface datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--March 1969 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 63.05 ft below land-surface datum, Apr. 15, 1969; lowest, 84.86 ft below land-surface datum, July 1, 1988.

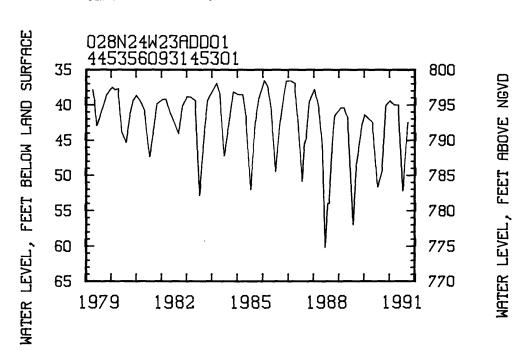
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATAUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 15 20 25 30 Dec 05 10 15 20 25 31	79.43 79.44 79.45 79.37 79.44 79.45 79.45 79.45 79.45	Jan 05 10 15 20 25 31 Feb 05 10 15 20 25 28	79.34 79.48 79.32 79.40 79.50 79.45 79.38 79.29 79.49 79.27 79.39	Mar 05 10 15 20 25 31 Apr 05 10 15 20 25 30	79.03 79.40 79.44 79.21 79.25 79.17 79.08 80.18 79.89 79.11 79.87 79.87	May 05 10 15 20 25 31 Jun 05 10 15 20 25 30	79.30 79.23 80.39 80.15 79.98 78.98 80.59 81.70 79.87 83.45 81.98 83.81	Jul 05 10 15 20 25 31 Aug 05 10 15 20 25 31	80.60 81.04 83.11 82.32 83.84 82.66 80.64 80.79 81.50 82.90 80.44 84.17	Sep 05 10 15 20 25 30	82.74 80.27 79.54 79.79 80.35 79.86

445356093145301. Local number, 028N24W23ADD01.
LOCATION.--Lat 44*53*56", long 93*14*53", in SE\SE\NE\ sec.23, T.28 N., R.24 W., Hydrologic Unit 07010206, at 5728 Cedar Avenue, Minneapolis.

at 5/26 tegar Avenue, Firmmeapoirs.
Owner: Hope Lutheran Church.
AQUIFER.-Prairie du Chien Group of Early Ordovician Age.
WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 6 in., depth 245 ft, cased to 172 ft.
DATUM.--Altitude of land-surface datum is 835 ft. Measuring point: Top of casing, 0.30 ft above land-

surface datum.


PERIOD OF RECORD.--April 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 36.50 ft below land-surface datum, Jan. 22, 1986;

lowest, 80.17 ft below land-surface datum, June 21, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 14	39.95	Mar 07	39.97	Jul 19	52.27
Jan 08	39.35	May 08	40.03	Sep 26	42.49

HENNEPIN COUNTY--Continued

450116093205301. Local number, 029N24W06CCC01.
LOCATION.--Lat 45°61'16", long 93°20'53", in SWkSWkSWk sec.6, T.29 N., R.24 W., Hydrologic Unit 07010206, at 3610 Unity Avenue North, Robbinsdale.

Owner: Minnesota Department of Transportation.

AQUIFER.-St. Peter Sandstone of Middle Ordovician Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 5 in., depth 200 ft, cased to 152 ft.
DATUM.--Altitude of land-surface datum is 870 ft. Measuring point: Top of casing, 3.50 ft above land-surface

datum.
REMARKS.--Water level affected by pumping.

PERIOD OF RECORD. --March 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 24.54 ft below land-surface datum, Dec. 28-29, 1975; lowest, 53.03 ft below land-surface datum, June 15, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATAUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 15 20 25 30 Dec 05 10 15 20	33.72 32.90 31.35 33.40 33.07 33.03 33.03 33.00 33.45	Jan 10 15 20 25 31 Feb 05 10 15 20 25 28	32.79 32.72 32.42 32.87 33.04 33.13 32.42 32.96 32.82 32.40 32.30	Mar 05 10 15 20 25 31 Apr 05 10 15 20 25 30	31.97 31.61 32.40 32.02 31.51 33.52 33.64 32.65 32.49 35.59	May 05 10 15 20 25 31 Jun 05 10 15 20 25 30	31.67 35.44 37.69 35.04 34.68 35.43 35.16 35.79 40.32 40.33 38.44	Jul 05 10 15 20 25 31 Aug 05 10 15 20 25 31	36.04 37.58 39.62 39.48 39.59 36.89 35.05 34.51 36.98 35.93 34.51	Sep 05 10 15 20 25 30	38.89 36.41 34.42 32.77 32.47 33.55

445833093154301. Local number, 029N24W26BAB01. LOCATION.--Lat 44°58'33", long 93°15'43", in NWkNEkNWk sec.26, T.29 N., R.24 W., Hydrologic Unit 07010206, at 425 Portland Avenue.

Owner: Minneapolis Star and Tribune.

AQUIFER. -- Prairie du Chien Group of Early Ordovician Age and Jordan Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 16 in., depth 445 ft, cased to 252 ft.
DATUM. -- Altitude of land-surface datum is 835 ft. Measuring point: Top of steel cover, 7.60 ft below landsurface datum.

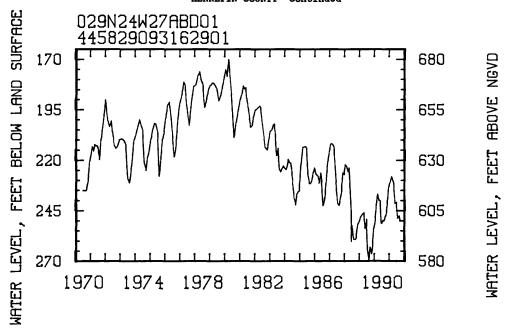
REMARKS.--Water level affected by pumping.
PERIOD OF RECORD.--June 1981 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 56.45 ft below land-surface datum, Jan. 10, 1983; lowest, 149.36 ft below land-surface datum, Aug. 16, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 29	69.50	Dec 26	64.65	Feb 26	67.85	Apr 26	72.99	Jun 26	116.30	Aug 27	118.46
Nov 21	75.80	Jan 31	67.25	Mar 27	69.70	May 30	109.67	Jul 29	93.64	Sep 20	74.10

445829093162901. Local number, 029N24W27ABD01.
LOCATION.--Lat 44°58'29", long 93°16'29", in SEkNWkNEk sec.27, T.29 N., R.24 W., Hydrologic Unit 07010206, at 911 LaSalle Avenue, Minneapolis.
Owner: American Linen Supply Co.
AQUIFER.--Mount Simon Sandstone of Late Cambrian Age and Hinckley Sandstone of Late Precambrian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 16 in., depth 1,094 ft, cased to 812 ft.
DATUM.--Altitude of land-surface datum is 850 ft. Measuring point: Hole in pump base, 22.00 ft below landsurface datum.

SUFFACE CALUM.


REMARKS.--Water level affected by regional pumping.

PERIOD OF RECORD.--July 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 169.8 ft below land-surface datum, Apr. 15, 1980; lowest, 269.92 ft below land-surface datum, Aug. 28, 1989.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 29	245.76	Dec 26	233.19	Feb 26	227.95	Apr 26	231.54	Jun 26	240.73	Aug 27	247.37
Nov 21	241.29	Jan 31	229.92	Mar 27	230.00	May 30	241.35	Jul 29	248.85	Sep 20	250.08

HENNEPIN COUNTY--Continued

445618093211801. Local number, 117N21W16CDB01.
LOCATION.--Lat 44°56'18", long 93°21'18", in NWaSELSWA sec.16, T.117 N., R.21 W., Hydrologic Unit 07010206, at 2565 Wooddale Avenue South, St. Louis Park. Owner: D-A Lubricant Co.

AQUIFER. --Ironton-Galesville Sandstones of Late Cambrian Age.
WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 4 in., depth 691 ft, screened 651 to 661 ft

561 ft.

DATUM.--Altitude of land-surface datum is 917.2 ft, National Geodetic Vertical Datum of 1929. Measuring point: Hole in well seal, 3.60 ft above land-surface datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 130.25 ft below land-surface datum, Feb. 6, 1987; lowest, 155.46 ft below land-surface datum, Sept. 20, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 14	144.34	Mar 07	137.01	Jul 19	141.30
Jan 10	140.32	May 13	134.72	Sep 19	145.70

445646093395301. Local number, 117N24W13BBC04.
LOCATION.--Lat 44°45'46", long 93°39'53", in SWkNWkNWk sec.13, T.117 N., R.24 W., Hydrologic Unit 07010206, at 3-Point Road.
Owner: City of Mound, well 4.
AQUIFER.--Mount Simon Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in., depth 729 ft, cased to 600 ft.
DATUM.--Altitude of land-surface datum is 945 ft: Measuring point: Top of breather pipe, 2.35 ft

above land-surface datum.

PERIOD OF RECORD. --November 1985 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 65.30 ft below land-surface datum, Mar. 4, 1980; lowest, 72.80 ft below-land surface datum, Nov. 2, 1989.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 11	66.45	Mar 07	66.32	Jul 19	66.57
Jan 10	66.59	May 13	66.01	Sep 19	66.95

HENNEPIN COUNTY--Continued

445740093333001. Local number, 117N23W11BBD01.

LOCATION.--Lat 44°57'40", long 93°33'30", in SEkNWkNWk sec.11, T.117 N., R.23 W., Hydrologic Unit 07010206, 2 mi southwest of Wayzata, at Lake Minnetonka.

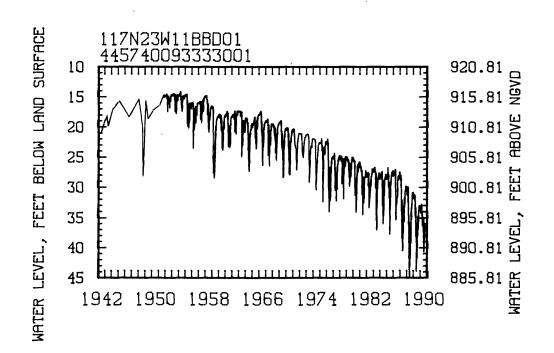
Owner: Minnetonka Boat Works, Inc., Orono.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age and Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 437 ft, cased to 270 ft.

DATUM.--Altitude of land-surface datum is 930.8 ft National Geodetic Vertical Datum of 1929. Measuring point:

Wood floor of instrument shelter, 3.30 ft above land-surface datum.


REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--August 1942 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.05 ft below land-surface datum, Apr. 30, 1954; lowest, 44.77 ft below land-surface datum, June 28, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	Water Level
Oct 05	35.20	Dec 05	32.47	Feb 05	33.07	Apr 05	33.28	Jun 05	34.32	Aug 05	34.36
10	35.14	10	32.53	10	32.69	_ 10	33.62	10	32.96	10	33.13
15	34.48	15	33.04	15	32.48	15	33.33	15	35.94	15	34.34
20	33.88	20	33,00	20	32.10	20	33.01	20	35.55	20	34.22
25	34.10	25	33.01	25	32.28	25	33.14	25	37.44	25	35.05
31	34.67	31	32.79	28	32.16	30	33.00	30	38.23	31	37.30
Nov 05	33.40	Jan 05	32.52	Mar 05	32.40	May 05	33.21	Jul 05	35.42	Sep 05	37.37
10	32.93	10	32.62	10	32.88	10	33.51	10	35.60	10	36,67
15	33.00	15	32.04	15	32.89	15	34.33	15	34.26	15	35,45
20	32.88	20	32.44	20	32.38	20	33.95	20	36.46	20	35.10
25	32.35	25	32.91	25	32.32	25	34.49	25	37.51	25	34.42
30	32 48	31	33 26	31	32 72	31	32 80	31	35.48		. • . –

HENNEPIN COUNTY--Continued

450223093231801. Local number, 118N21W07DCB01.
LOCATION.--Lat 45°02'23", long 93°23'18", in NW\SW\SE\ sec.7, T.118 N., R.21 W., Hydrologic Unit 07010206, at
47th Avenue North and Aquila Avenue.
Owner: City of New Hope.
AQUIFER.--Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 16 in., depth 422 ft, cased to 339 ft. DATUM. -- Altitude of land-surface datum is 933 ft. Measuring point: Top of wood platform, 3.00 ft above land-

DATION. --AIDITUDE Of Take Sufface datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--October 1965 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 60.46 ft below land-surface datum, Dec. 17, 1967; lowest, 77.56 ft below land-surface datum, July 11, 1985.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATAUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DAT	E	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 05 10	71.41 70.84	Dec 05 10	69.43 69.26	Feb 05 10	69.86 69.42	Apr	05 10	69.88 70.50	Jun 05 10	70.65 71.82	Aug 05 10	71.18 70.71
15	70.00	15	69.62	15	70.06		15	68.81	15	72.17	15	71.50
20 25	69.74 68.75	20 25	69.81 68.78	20 25	69.56 69.34		20 25	69.68 70.48	20 25	72.17 71.70	20 25	71.37 71.40
31	69.79	31	68.90	28	69.31		30	70.25	30	74.25	31	73.97
Nov 05 10	69.19 69.07	Jan 05 10	69.32 69.65	Mar 05 10	69.09 69.58	May	05 10	70.05 70.37	Jul 05 10	70.78 71.9 7	Sep 05 10	72.65 71.62
15	69.53	15	69.12	15	69.79		15	71.95	15	72.41 72.77	15 20	70.13 69.97
20 25	69.10 69.04	20 25	69.23 69.89	20 25	69.43 69.46		20 25	71.35 70.79	20 25	73.51	25	69.61
30	69.31	31	69.87	31	69.43		31	70.42	31	71.99	30	69.53

445905093224401. Local number, 118N21W32CBB01.
LOCATION.--Lat 44°59'05", long 93°22'44", in NWkNWkSWk sec.32, T.118 N., R.21 W., Hydrologic Unit 07010206, at Winnetka Avenue and Highway 55, Golden Valley.

Owner: Red Owl Store.
AQUIFER.--Surficial sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 6 in., depth 95 ft, screened 87 to

DATUM. -- Altitude of land-surface datum is 895 ft. Measuring point: Top of well cap, 0.80 ft above

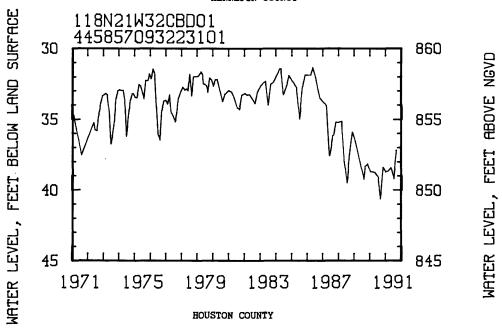
land-surface datum.
PERIOD OF RECORD. --May 1979 to current year.
EXTREMES FOR PERIOD OF RECORD. --Highest water level, 17.72 ft below land-surface datum, May 12, 1986; lowest, 22.43 ft below land-surface datum, Jan. 18, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 14	21.14	Mar 07	21.82	Jul 19	19.97
Jan 10	21.53	May 13	20.99	Sep 19	19.29

445857093223101. Local number, 118N21W32CBD01.
LOCATION.--Lat 44°58'57", long 93°22'31", in SEkNWkSWk sec.32, T.118 N., R.21 W., Hydrologic Unit 07010206, at 760 Harold Avenue, Golden Valley.

Owner: Golden Valley Methodist Church.
AQUIFER.--St. Peter Sandstone of Middle Ordovician Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in., depth 265 ft, cased to 200 ft.
DATUM.--Altitude of land-surface datum is 890 ft. Measuring point: Top of well cap, 0.70 ft above


land-surface datum.

PERIOD OF RECORD.--February 1971 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 31.33 ft below land-surface datum, May 12, 1986; lowest, 40.62 ft below land-surface datum, Sept. 14, 1990.

WATER DATE	LEVEL	WATER DATE	LEVEL	WATER DATE	LEVEL
Nov 14	38.35	Mar 07	38.63	Jul 19	39.20
Jan 10	38.71	May 13	38.40	Sep 19	37.17

HENNEPIN COUNTY

433935091251801. Local number, 102N05W03DCC01.
LOCATION.--Lat 43°39'35", long 91°25'18", in SW&SW&SE& sec.3, T.102 N., R.5 W., Hydrologic Unit 07060001, 3 mi east of Caledonia.

Owner: U.S Geological Survey.
AQUIFER.--Jordan Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in., depth 360 ft, cased to

309 ft.

DATUM. --Altitude of land-surface datum is 1,210 ft. Measuring point: Top of casing, 2.50 ft above

land-surface datum.

PERIOD OF RECORD.--June 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 213.76 ft below land-surface datum, July 17, 1985; lowest, 246.64 ft below land-surface datum, Sept. 20, 1991.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 10 15 20 25 30	242.82 242.66 242.84 242.82 243.36	Mar 08 Aug 15 20 25 31	244.16 245.96 246.13 246.25 246.34	Sep 05 10 15 20 25	246.20 246.33 246.07 246.64 246.19
				30	246.35

433935091252001. Local number, 102N05W03DCC02.
LOCATION.--Lat 43°39'35", long 91°25'20", in SW\sW\sE\sec.3, T.102 N., R.5 W., Hydrologic Unit 07060001, 3 mi east of Caledonia.

Owner: U.S. Geological Survey.
AQUIFER.--Ironton-Galesville Sandstones of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in., depth 650 ft, cased to

DATUM. --Altitude of land-surface datum is 1,210 ft. Measuring point: Top of casing, 2.50 ft above

land-surface datum.

PERIOD OF RECORD. --November 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 441.50 ft below land-surface datum, June 4, 1981; lowest, 452.21 ft below land-surface datum, July 31, 1990.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 08	451.40	Mar 08	451.76	Aug 14	451.40	Sep 27	451.43

HOUSTON COUNTY

443935091252901. Local number, 102N05W03DCC03.
LOCATION.--Lat 44'39'35", long 91°25'19", in SWkSWkSEk sec.3, T.102 N., R.5 W., Hydrologic Unit 07060001, 3 mi east of Caledonia.

Owner: U.S. Geological Survey
AQUIFER.--Mount Simon Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 4 in., depth 888 ft, cased to 858 ft. DATUM. -- Altitude of land-surface datum is 1,210 ft. Measuring point: Top of casing, 2.00 ft above land-

surface datum.

PERIOD OF RECORD.--July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 522.00 ft below land-surface datum, Nov. 10, 1983; lowest, 526.00 ft below land-surface datum, Sept. 29, 1989.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

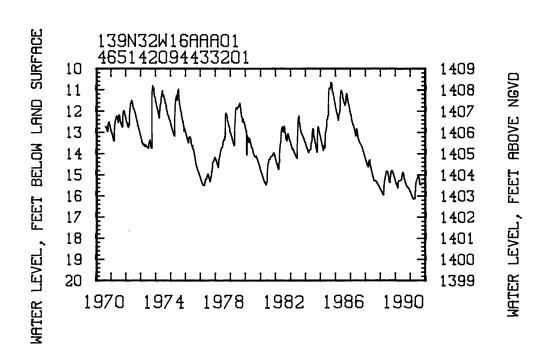
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Nov 08	525.68	Mar 08	525.46	Sep 27	525.92	

HUBBARD COUNTY

465142094433201. Local number, 139N32W16AAA01. LOCATION.--Lat 46°51'42", long 94°43'32", in NE\nE\nE\nE\sec.16, T.139 N., R.32 W., Hydrologic Unit 07010106, at

Badoura Nursery.

Owner: U.S. Geological Survey.


AQUIFER.--Surficial outwash sand of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in., depth 21 ft, screened 19 to 21 ft.

DATUM.--Altitude of land-surface datum is 1,419 ft. Measuring point: Top of casing, 2.00 ft above land-surface datum.

REMARKS.--Measured weekly by Archie Hakala.
PERIOD OF RECORD.--September 1970 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 10.63 ft below land-surface datum, Sept. 24, 1985; lowest, 16.15 ft below land-surface datum, Mar. 19, 1991.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 02	15.50	Dec 18	15.72	Feb 05	15.96	Apr 02	16.10	Jun 04	15.29	Aug 06	15.05
09	15.51	25	15.75	12	16.00	09	16.12	11	15.22	13	15.16
16	15.55	Jan 01	15.78	19	16.03	16	16.14	18	15.20	20	15.23
22	15.56	08	15.81	26	16.05	23	16.14	25	15.15	27	15.39
30	15.59	15	15.86	Mar 05	16.10	30	16.10	Jul 02	15.11	Sep 03	15.46
Nov 07	15.60	22	15.89	12	16.12	May 07	15.97	09	15.07	10	15.44
13	15.60	29	15.93	19	16.15	14	15.78	16	15.05	17	15.43
20	15.61		15.00	26	16.10	21	15.63	23	15.03	24	15.44
27	15 63				20.20	28	15.42	30	15.02		

ISANTI COUNTY--Continued

453125093181101. Local number, 035N24W14BCD01. LOCATION.--Lat_45°31'25", long 93°18'11", in SE\SW\NW\k sec.14, T.35 N., R.24 W., Hydrologic Unit 07010207, northwest of Isanti. Owner: Allen Kluck.

AQUIFER.-Eeu Claire - Mount Simon Formations of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 12 in., depth 300 ft, cased to 105 ft.
DATUM.--Altitude of land-surface datum is 940 ft. Measuring point: Hole in pump base, 0.10 ft above land-surface datum.

PERIOD OF RECORD. --February 1968 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 11.18 for lowest, 16.16 ft below land-surface datum, Oct. 31, 1989. 11.18 ft below land-surface datum, June 24, 1986;

WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL
Aug 02	12.43	Sep 30	12.38

453058093175901. Local number, 035N24W14CDC01. LOCATION.--Lat_45°30'58", long 93°17'59", in SWkSEkSWk sec.14, T.35 N., R.24 W., Hydrologic Unit 07010207, northwest of Isanti.

Owner: Ernest Kluck.

AQUIFER.--Surficial outwash sand of Pleistocene Age.

WELL CHARACTERISTICS.--Driven unused water-table well, diameter 1% in., depth 17 ft, screen information not available.

DATUM. -- Altitude of land-surface datum is 930 ft. Measuring point: Top of casing, 3.00 ft above landsurface datum.

PERIOD OF RECORD. -- March 1968 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 2.50 ft below land-surface datum, June 24, 1986; lowest, 10.87 ft below land-surface datum, Oct. 31, 1989.

WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATEI LEVEI
A110 (12	7 09	Sen 30	6.90

ITASCA COUNTY

471448093322001. Local number, 055N25W17ACD01.
LOCATION.--Lat 47°14'48", long 93°32'20", in SE\sW\nE\sec.17, T.55 N., R.25 W., Hydrologic Unit 07010103, at west end of 13th Street NW, Grand Rapids.

Owner: U.S. Geological Survey.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in., depth 147 ft, screened

143 to 147 ft.

DATUM. -Altitude of land-surface datum is 1,318 ft. Measuring point: Top of platform, 1.60 ft above land-surface datum.

PERIOD OF RECORD. --April 1962 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 29.04 ft below land-surface datum, June 1, 1966;

lowest, 33.92 ft below land-surface datum, May 17, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 10	31.88	Nov 23	31.72	Feb 14	32.06	May 09	32.28	Jul 30	32.18
12	31.87	Jan 04	31.98	Mar 25	32.18	Jun 12	31.72	Sep 06	31.39

JACKSON COUNTY

434742095191501. Local number, 104N37W19DBD01. LOCATION.--Lat 43°47'42", long 95°19'15", in SEkNWkSEk sec.19, T.104 N., R.37 W., Hydrologic Unit 07100001, at Heron Lake.

Owner: City of Heron Lake, old railroad well.

AQUIFER.--Sioux Quartzite of Late Precambrian Age.

WELL CHARACTERISTICS.--Drilled public-supply artesian well, diameter 16 in., depth 323 ft, screened 205 to 225 ft.

DATUM. --Altitude of land-surface datum is 1,420 ft. Measuring point: Edge of breather pipe, 2.60 ft

above land-surface datum.

PERIOD OF RECORD. --August 1972, July 1973, September 1976, July 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 59.16 ft below land-surface datum, Aug. 11, 1972; lowest, 66.10 ft below land-surface datum, July 14, 1981.

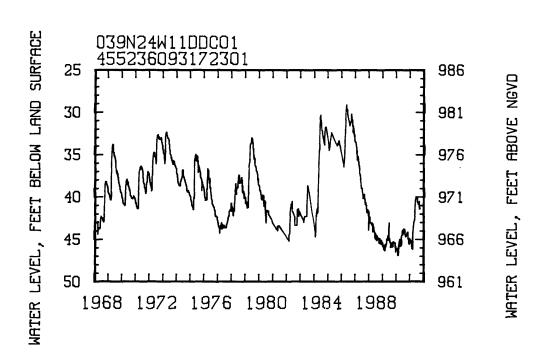
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	Water Level
Oct 23	64.78	Feb 01	63.85	Jun 19	61.44
Nov 28	64.43	Apr 17	62.40	Aug 19	62.06

KANABEC COUNTY

455236093172301. Local number, 039N24W11DDC01.
LOCATION.-Lat 45°52'36", long 93°17'23", in SW&SE&SE& sec.11, T.39 N., R.24 W., Hydrologic Unit 07030004, intersection of Forest Avenue and U.S. Highway 65.

Owner: City of Mora, well 3.
AQUIFER.-Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled public-supply artesian well, diameter 12 in., depth 170 ft, screened 150 to 170 ft.
DATUM.--Altitude of land-surface datum is 1,011 ft. Measuring point: Edge of vent pipe, 2.40 ft above land-


surface datum.

PERIOD OF RECORD. --March 1968 to current year.

PERIOD OF RECORD. --March 1968 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 29.10 ft below land-surface datum, May 27, 1986; lowest, 46.90 ft below land-surface datum, Mar. 5, 12, 1990.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 03 09 15 22 29 Nov 05 13 19 26	44.54 44.60 44.37 44.30 44.35 44.10 44.11 44.19	Dec 03 10 17 24 31 Jan 07 14 22 28	44.92 44.94 45.20 45.57 45.57 44.83 45.04 45.05	Feb 05 11 19 26 Mar 04 12 18 27	45.10 45.15 45.15 45.15 45.35 46.11 45.94 46.18	Apr 02 08 17 23 29 May 06 23 28	45.00 44.50 43.70 43.52 43.18 42.85 42.30 42.05	Jun 03 12 17 24 Jul 01 08 18 29	41.20 40.25 40.10 40.10 40.00 40.12 40.10 40.21	Aug 06 12 19 26 Sep 16 24 30	40.57 40.67 40.80 40.87 40.50 41.18 41.40

LE SUEUR COUNTY

442522093543901. Local number, 111N26W14ADA01.
LOCATION.--Lat 44°25'22", long 93°54'39", in NE\SE\NE\sec.14, T.111 N., R.26 W., Hydrologic Unit 07020012, 0.85 mi south of Le Sueur.
Owner: Merle Moser.
AQUIFER.--Buried gravel of Pleistocene Age and Jordan Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 16 in., depth 242 ft, screened 212

to 242 ft.

DATUM. -- Altitude of land-surface datum is 855 ft. Measuring point: Edge of vent pipe, 1.20 ft above land-surface datum.

PERIOD OF RECORD. -- January 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 71.82 ft below land-surface datum, Feb. 11, 1987; lowest, 84.55 ft below land-surface datum, Mar. 9, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	Water Level	DATE	WATER LEVEL
Nov 20	82.78	Mar 26	83.00	May 29	83.03	Sep 25	82.02

443234093333501 Local number, 112N23W02BAB01.

LOCATION. -- Lat 44°32'34", long 93°33'35", in NWkNEkNWk sec.2, T.112 N., R.23 W., Hydrologic Unit 07020012, just east of New Prague.

Owner: Holy Trinity Lutheran Church.

AQUIFER.--St. Lawrence Formation of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 4 in., depth 180 ft, cased to 155 ft.

DATUM.--Altitude of land-surface datum is 1,005 ft. Measuring point: Top of casing, 1.00 ft above

land-surface datum.

PERIOD OF RECORD.--April 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 93.56 ft below land-surface datum, Feb. 3, 1987; lowest, 99.42 ft below land-surface datum, July 26, 1979.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 20	96.73	May 10	96.15	Sep 18	97.00

443147093374501. Local number, 112N23W06DDD01.
LOCATION.--Lat 44*31'47",long 93*37'45", in SE\se\se\se\se.6, T.112 N., R.23 W., Hydrologic Unit 07020012,
3 mi southwest of New Prague.

Owner: Friedens Lutheran Church.

AQUIFER.--St. Lawrence Formation of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 5 in., depth 265 ft, cased to 209 ft.

DATUM.--Altitude of land-surface datum is 1,019 ft. Measuring point: Top of casing, 1.70 ft above land-surface datum.

PERIOD OF RECORD. --April 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 150.85 ft below land-surface datum, Mar. 18, 1981; lowest, 153.58 ft below land-surface datum, July 19, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 20	151.70	Mar 14	151.82	May 10	151.78	Sep 18	152.52

LINCOLN COUNTY

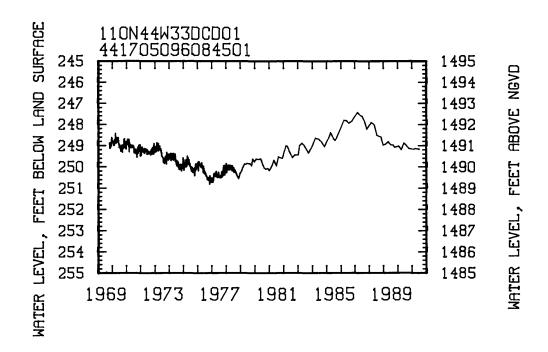
441705096084501. Local number, 110N44W33DCD01. LOCATION.--Lat 44°17'05", long 96°08'45", in SE%SW&SE% sec.33, T.110 N., R.44 W., Hydrologic Unit 07020006, at Tyler.

Owner: U.S. Geological Survey.

AQUIFER.--Dakota Sandstone of Early Cretaceous Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 8 in., depth 967 ft, screened 890 to 900 ft.

DATUM. -- Altitude of land-surface datum is 1,738 ft. Measuring point: Top of recorder platform, 3.50 ft


above land-surface datum.

PERIOD OF RECORD. -- November 1969 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 247.41 ft below land-surface datum, Mar. 23, 1987; lowest, 250.82 ft below land-surface datum, Nov. 12, 1976.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 23	249.14	Feb 21	249.17	Apr 08	249.12	Jul 10	249.17

MARTIN COUNTY

434359094422201. Local number, 103N32W08CCD01. LOCATION.--Lat 43°43'59", long 94°42'22", in SE\sW\sW\sw. sec.8, T.103 N., R.32 W., Hydrologic Unit 07020009, 1.5 mi south of Trimont.

Owner: Robert Olson.

AQUIFER. --Sandstone of Cretaceous Age.
WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 16 in., depth 412 ft, screened 372

to 412 ft.

DATUM.--Altitude of land-surface datum is 1,242 ft. Measuring point: Vent pipe, 0.50 ft above land-

PERIOD OF RECORD. -- July 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 90.50 ft below land-surface datum, Apr. 14, 1987; lowest, 96.22 ft below land-surface datum, July 21, 1987.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 19	92.71	Mar 25	92.00	Jul 23	92.12
Jan 29	92.50	May 28	92.02	Sep 24	92.54

MARTIN COUNTY -- Continued

434725094483001. Local number, 104N33W28BAB01.
LOCATION.--Lat 43°47'25", long 94°48'30", in NWANELNWA sec.28, T.104 N., R.33 W., Hydrologic Unit 07020009, 6.6 min northwest of Trimont.

Owner: Kenneth Schafer.

AQUIFER. --Sioux Quartzite of Late Precambrian Age.
WELL CHARACTERISTICS. --Drilled unused artesian well, diameter 5 in., depth 178 ft, cased to 121 ft.
DATUM. --Altitude of land-surface datum is 1,290 ft. Measuring point: Top of casing, 1.30 ft above

land-surface datum.

PERIOD OF RECORD.--September 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 82.99 ft below land-surface datum, Apr. 14, 1987; lowest, 86.37 ft below land-surface datum, Mar. 25, 1991.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 19	85.78	Mar 25	86.37	Jul 23	85.56
Jan 29	86.02	May 28	85.50	Sep 24	85.25

MC LEOD COUNTY

444758094132101. Local number, 115N28W05ACC01. LOCATION.--Lat 44°47'58", long 94°13'21", in SW\sW\nE\sec.5, T.115 N., R.28 W., Hydrologic Unit 07010205, northwest of Glencoe.

Owner: Graupmann Farms, Inc.
AQUIFER.--Mount Simon Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 12 in., depth 472 ft, screened 432

to 472 ft.

DATUM. --Altitude of land-surface datum is 1,036 ft. Measuring point: Edge of vent pipe, 2.00 ft

above land-surface datum. PERIOD OF RECORD.--September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 80.50 ft below land-surface datum, Aug. 20, 1979; lowest, 109.65 ft below land-surface datum, Oct. 1, 1979.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE WATER LEVEL		DATE	WATER DATE LEVEL DATE			
Nov 16 Mar 13	91.83 86.95	May 14 Jul 24	85.88 91.92	Sep 23	98.45	

444819094164701. Local number, 116N29W35DDC01.
LOCATION.--Lat 44°48'19", long 94°16'47", in SW\sE\sE\sec.35, T.116 N., R.29 W., Hydrologic Unit 07010205,
1.3 mi south of Biscay.

Owner: Charles Johnson.

AQUIFER. -- Buried sand of Pleistocene Age.

WELL CHARACTERISTICS. -- Drilled irrigation artesian well, diameter 12 in., depth 269 ft, screened 229 to 269 ft.

DATUM. --Altitude of land-surface datum is 1,050 ft. Measuring point: Edge of vent pipe, 1.00 ft above land-surface datum.

PERIOD OF RECORD. --September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 24.21 ft below land-surface datum, Jan. 23, 1986; lowest, 34.80 ft below land-surface datum, Aug. 26, 1989.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 16 Mar 13	30.18 29.45	May 14 Jul 25	28.73 28.60	Sep 23	28.55

MC LEOD COUNTY -- Continued

445721094031201. Local number 117N27W10DAA01. LOCATION.--Lat 44°57'21", long 94°03'12", in NE\NE\SE\ sec.10, T.117 N., R.27 W., Hydrologic Unit 07010205, 0.1 mi south of Winsted.

Owner: Winsted Farmers Coop.

AQUIFER - Buried sand of Pleistocene Age.
WELL CHARACTERISTICS .-- Drilled industrial artesian well, diameter 4 in., depth 129 ft, screened 125

to 129 ft.

DATUM. --Altitude of land-surface datum is 1,015 ft. Measuring point: Top of casing, 1.40 ft above

land-surface datum.

PERIOD OF RECORD. --November 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 30.63 ft below land-surface datum, Dec. 10, 1986;

lowest, 45.50 ft below land-surface datum, Oct. 7, 1987.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 16	37.65	Mar 13	38.13	Jul 25	35.50
Jan 17	37.69	May 14	37.69	Sep 23	34.00

MEEKER COUNTY

450632094290801. Local number, 119N30W19AAB01.
LOCATION.--Lat 45°06'32", long 94°29'08", in NW\nE\nE\ sec.19, T.119 N., R.30 W., Hydrologic Unit 07010204, on Ted Carlson farm.

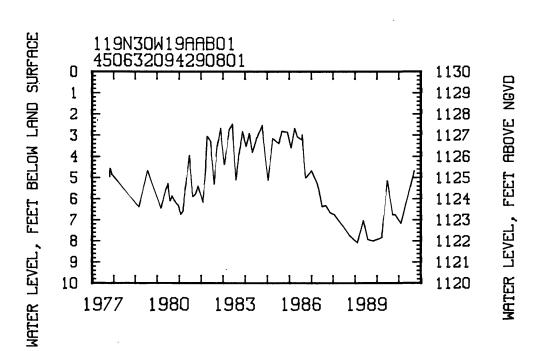
Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 1% in., depth 26 ft, screened 24

to 26 ft.

DATUM. --Altitude of land-surface datum is 1,130 ft. Measuring point: Top of casing, 3.30 ft above


land-surface datum.

PERIOD OF RECORD. --November 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.47 ft below land-surface datum, June 14, 1983;

lowest 8.09 ft below land-surface datum, Feb. 13, 1989.

DATE	WATER LEVEL	DATE	Water Level	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 08	6.75	Feb 08	7.17	Jul 18	5.40	Sep 18	4.70

MEEKER COUNTY--Continued

451542094322301. Local number, 121N31W26BDC01. LOCATION.--Lat 45°15'42", long 94°32'23", in SWkSEkNWk sec.26, T.121 N., R.31 W., Hydrologic Unit 07010204,

on Keith Langmo farm.

Owner: U.S. Geological Survey. AQUIFER. -- Surficial sand of Pleistocene Age. WELL CHARACTERISTICS. -- Bored observation water-table well, diameter 1% in., depth 16 ft, screened 14

to 16 ft.

DATUM. -- Altitude of land-surface datum is 1,112 ft. Measuring point: Top of casing, 3.00 ft above land-surface datum.
PERIOD OF RECORD. -- November 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 2.70 ft below land-surface datum, Aug. 18, 1986; lowest, 9.19 ft below land-surface datum, Mar. 30, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 08	6.15	Feb 08	6.98	Jul 18	4.08	Sep 18	3.46

MILLE LACS COUNTY

454450093395701. Local number, 038N27W35ABC01. LOCATION.--Lat 45°44'50", long 93°39'57", in SWkNWkNEk sec.35, T.38 N., R.27 W., Hydrologic Unit 07010207, in Milaca.

in Milaca.

Owner: City of Milaca, creamery well.

AQUIFER. --Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS. --Drilled unused artesian well, diameter 12 in., depth 82 ft, screened 67 to 82 ft.

DATUM. --Land-surface datum is 1,082.2 ft National Geodetic Vertical Datum of 1929. Measuring point:

Top of breather pipe, 4.00 ft above land-surface datum.

REMARKS. --Water level affected by pumping.

PERIOD OF RECORD. --September 1967 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 35.72 ft below land-surface datum, July 20, 1984; lowest, 42.81 ft below land-surface datum, Aug. 27, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL
Aug 02	38.60	Sep 30	39.30

MORRISON COUNTY

460444094212501. Local number, 130N29W08DCC01. LOCATION.--Lat 46°04'44", long 94°21'25", in SWkSWkSEk sec.8, T.130 N., R.29 W., Hydrologic Unit 07010104, at

Camp Ripley.

Owner: U.S. Geological Survey.

AQUIFER. --Surficial outwash sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in., depth 59 ft, screened 56 to 59 ft.

DATUM--Land-surface datum is 1,149.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 2.10 ft above land-surface datum.

REMARKS.--Water levels used in monthly Water Resources Review.

PERIOD OF RECORD. --April 1949 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 7.35 ft below land-surface datum, July 28, 1972; lowest, 19.75 ft below land-surface datum, Aug. 4, 1961.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 05 12 19 26 Nov 02 09 16 23 30	14.67 14.74 14.58 14.58 14.61 14.74 14.64 14.67	Dec 07 14 21 28 Jan 04 11 18 25	14.70 14.85 14.93 15.12 14.98 15.03 15.41 15.33	Feb 01 08 15 22 Mar 01 08 15 22	15.21 15.29 15.68 15.53 15.68 15.81 15.55 15.79	Apr 03 05 19 26 May 03 10 18 24	15.49 15.36 15.52 15.14 15.13 15.12 14.99	Jun 01 07 14 22 28 Jul 05 12 19 26	14.08 13.85 14.78 14.52 14.02 14.02 13.66 14.00	Aug 02 09 16 23 Sep 06 13 20 27	13.85 13.36 14.02 14.05 14.14 14.00 13.84 13.81

MOWER COUNTY

434010093010801. Local number, 102N18W05ACB01. LOCATION.--Lat 43°40'10", long 93°01'08", in NW\SW\NE\ sec.5, T.102 N., R.18 W., Hydrologic Unit 07080201, in Austin.

Owner: Church of Latter Day Saints.

AQUIFER.--Cedar Valley Formation of Middle Devonian Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 5 in., depth 100 ft, cased to 77 ft.

DATUM.--Altitude of land-surface datum is 1,230 ft. Measuring point: Top of casing, 0.80 ft above

land-surface datum.

PERIOD OF RECORD. --July 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 33.69 ft below land-surface datum, May 10, 1984; lowest, 38.44 ft below land-surface datum, July 10, 1985.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 19 Mar 25	36.09 35.87	May 28 Jul 23	33.98 35.82	Sep 24	35.89

434417093521001. Local number, 103N17W09DAA01. LOCATION.--Lat 43°44'17", long 93°52'10", in NE\NE\SE\ sec.9, T.103 N., R.17 W., Hydrologic Unit 07080201, in Brownsdale.

Owner: Land O'Lakes, creamery well.

AQUIFER.--Cedar Valley Formation of Middle Devonian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 4 in., depth 130 ft, casing information

not available.

DATUM.--Altitude of land-surface datum is 1,280 ft. Measuring point: Top of well cap, 0.40 ft above

land-surface datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--February 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 35.97 ft below land-surface datum, May 2, 1984; lowest, 45.20 ft below land-surface datum, Mar. 30, 1978.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL			WATER LEVEL DATE		
Nov 01	38.83	Mar 05	41.52	May 29	37.67	
Dec 12	40.64	Apr 17	40.76	Jul 09	37.37	

OLMSTED COUNTY

445538092232601. Local number, 105N13W04CAA01.
LOCATION.--Lat 44°55'38", long 92°23'26", in NWkNWkSWk sec.4, T.105 N., R.13 W., Hydrologic Unit 07040004, 1 mile east of Simpson.
Owner: Robert Sheehan.
AQUIFER.--Galena Formation of Middle Ordovician Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 4 in., depth 75 ft, cased to 23 ft.
DATUM.--Altitude of land-surface datum is 1,270 ft: Measuring point: Top of well cap, 1.20 ft above land-surface datum.

PERIOD OF RECORD. -- March 1987 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 15.16 ft below land-surface datum, May 7, 1991; lowest, 33.30 ft below land-surface datum, Feb. 6, 1990.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Dec 05	29.60	Mar 05	28.50	Aug 01	24.54	
Jan 09	30.53	May 07	15.16	Sep 12	25.89	

OLMSTED COUNTY--Continued

Owner: Independent School District 535.

AQUIFER.--Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in. depth 510 ft, cased to 430 ft.

DATUM.--Altitude of land-surface datum is 1,090 ft: Measuring point: Top of well cap, 1.00 ft above

land-surface datum.

PERIOD OF RECORD. --February 1987 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 28.01 ft below land-surface datum, Feb. 25, 1987; lowest, 32.63 ft below land-surface datum, Feb. 6, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Dec 05	29.60	Mar 04	30.18	Aug 01	28.88	
Jan 09	30.53	May 07	29.68	Sep 12	29.15	

435920092273801. Local number, 105N14W14ADB01. LOCATION.--Lat 43°59'20", long 92°27'38", in NW\SE\NE\ sec.14, T.106 N., R.14 W., Hydrologic Unit 07040004,

in Rochester.

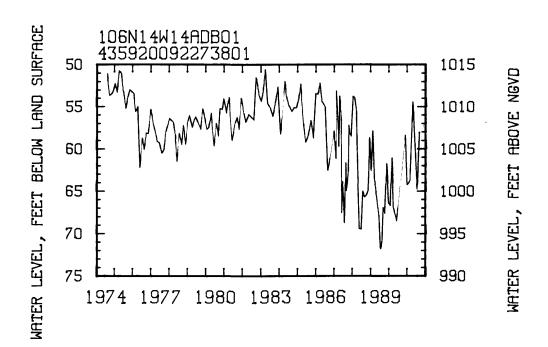
Owner: Golden Hill School Dist. #1371.

AQUIFER.--Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in., depth 478 ft, cased to 397 ft.

DATUM.--Altitude of land-surface datum is 1,065 ft. Measuring point: Edge of well cap, 1.80 ft above

land-surface datum.


REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--August 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 50.58 ft below land-surface datum, Apr. 12, 1983; lowest, 71.86 ft below land-surface datum, July 26, 1989.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Dec 05	58.30	Mar 05	63.65	Aug 01	64.82	
Jan 09	64.29	May 07	54.35	Sep 12	58.04	

RAMSEY COUNTY

445955093011001. Local number, 029N22W14CAB01. LOCATION.--Lat 44°59'55", long 93°01'10", in NWkNEkSWk sec.14, T.29 N., R.22 W., Hydrologic Unit 07010206, at Goodrich Golf Course.

Owner: Ramsey County.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age and Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 12 in., depth 523 ft, cased to 303 ft.

DATUM.--Altitude of land-surface datum is 970 ft. Measuring point: Edge of vent pipe, 2.50 ft above land-surface datum.

PERIOD OF RECORD. --Mey 1965, April 1966 to August 1966, August 1971, May 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 124.62 ft below land-surface datum, Feb. 6, 1987;
lowest, 140.60 ft below land-surface datum, Apr. 6, 1966.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Nov 06 Jan 07	131.50 132.00	May 16 Jul 16	134.23 138.67	Sep 17	130.84	

445955093011002. Local number, 029N22W14CAB02. LOCATION.--Lat 44°59'55", long 93°01'10", in NWkNEkSWk sec.14, T.29 N., R.22 W., Hydrologic Unit 07010206, at Goodrich Golf Course.

Owner: U.S. Geological Survey.

AQUIFER.--Buried gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation artesian well, diameter 2 in., depth 81 ft, screened 78 to

DATUM. --Altitude of land-surface datum is 970 ft. Measuring point: Top of casing, 1.30 ft above land-surface datum.

PERIOD OF RECORD. --October 1966 to August 1971, August 1977, June 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 30.80 ft below land-surface datum, Oct. 28, 1986; lowest, 45.36 ft below land-surface datum, June 3, 1968.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	Water Level	DATE	WATER LEVEL	
Nov 06 Jan 07	37.89 38.73	May 16 Jul 16	38.90 36.47	Sep 17	35.86	

445955093011003. Local number, 029N22W14CAB03. LOCATION.--Lat 44°59'55", long 93°01'10", in NWkNEkSWk sec.14, T.29 N., R.22 W., Hydrologic Unit 07010206, at Goodrich Golf Course.

Owner: U.S. Geological Survey.

AQUIFER. -- Buried gravel of Pleistocene Age. WELL CHARACTERISTICS. -- Bored observation water-table well, diameter 2 in., depth 52 ft, screened 49 to 52 ft.

DATUM. -- Altitude of land-surface datum is 970 ft. Measuring point: Top of casing, 1.80 ft above land-surface datum.

PERIOD OF RECORD. --October 1966 to August 1971, June 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 8.97 ft below land-surface datum, Oct. 28, 1986;

lowest, 25.43 ft below land-surface datum, June 3, 1968.

DATE	WATER LEVEL DATE		WATER LEVEL	DATE	WATER LEVEL
Nov 06 Jan 07	19.85 21.04	May 16 Jul 16	21.92 18.52	Sep 17	17.23

RAMSEY COUNTY--Continued

450001093024701. Local number, 029N22W16ADD01. LOCATION -- Lat 45°00'01", long 93°02'47", in SE\SE\NE\ sec.16, T.29 N., R.22 W., Hydrologic Unit 07010206,

at 1955 English St.

Owner: Maplewood Bowl.

AQUIFER.--Buried sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 4 in., depth 163 ft, screened 158 to 163 ft.

DATUM.--Altitude of land-surface datum is 900 ft. Measuring point: Top of well cap, 1.00 ft above landsurface datum.

PERIOD OF RECORD. -- January 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 65.99 ft below land-surface datum, Feb. 6, 1987; lowest, 73.83 ft below land-surface datum, Apr. 30, 1990.

WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER DATE LEVEL		WATER LEVEL	
Nov 06	73.22	Mar 04	73.11	Aug 02	72.85	
Jan 07	73.08	May 16	73.16	Sep 17	72.84	

445918092590901. Local number, 029N22W24ADA01.
LOCATION.--Lat 44°59'18", long 92°59'09", in NE\SE\NE\ sec.24, T.29 N., R.22 W., Hydrologic Unit 07010206, at 1555 Century Avenue.

Owner: Northern States Power Co., Maplewood Gas Plant.

AQUIFER.--Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled fire protection artesian well, diameter 12 in., depth 523 ft, cased

to 420 ft.

DATUM.--Land-surface datum is 996.5 ft National Geodetic Vertical Datum of 1929. Measuring point:
 Edge of 2 in. breather pipe, 2.40 ft above land-surface datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--August 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 131.90 ft below land-surface datum, Mar. 9, 1987; lowest, 151.0 ft below land-surface datum, May 14, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE LEVEL		DATE	WATER LEVEL	
Nov 06	138.80	Jun 11	144.70	

445700093051001. Local number, 029N22W31DDD01.
LOCATION.--Lat 44°57'00", long 93°05'10", in SE\SE\SE\SE\sec.31, T.29 N., R.22 W., Hydrologic Unit 07010206, at 261 East 5th Street, St. Paul.

Owner: Control Data Corp.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age and Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in., depth 298 ft, cased to 151 ft.

DATUM.--Altitude of land-surface datum is 750 ft. Measuring point: Top of recorder platform, 9.00 ft below

land-surface datum.

REMARKS.--Water level affected by pumping of nearby wells.

PERIOD OF RECORD.--December 1971 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.85 ft below land-surface datum, Apr. 1, 1991; lowest, 83.28 ft below land-surface datum, Aug. 4, 1989.

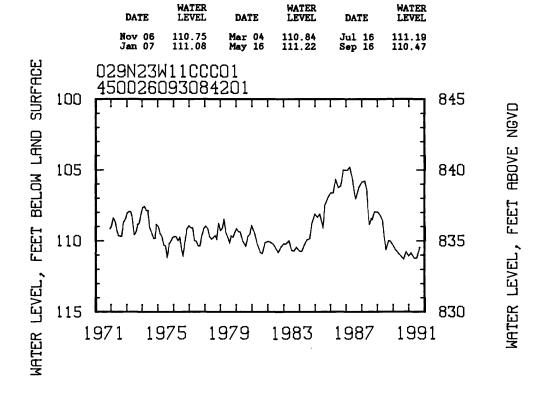
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 05	62.96	Dec 05	35.64	Feb 05	32.68	Apr 05	57.43	Jun 05	65.68	Aug 05	68.52
10	40.33	10	35.71	10	30.92	_ 10	35.49	10	68.38	10	63.88
15	43.80	15	35.50	15	34.26	15	31.45	15	63.61	15	72.62
20	36.65	20	34.32	20	33.41	20	36.16	20	70.20	20	67.94
25	40.83	25	34.26	25	31.99	25	54.90	25	72.28	25	67.05
31	49.91	31	33,62	28	33.13	30	41.08	30	66.53	31	69.53
Nov 05	35.66	Jan 05	33.85	Mar 05	32.63	May 05	30.11	Jul 05	68.58	Sep 05	68.88
10	34.94	10	33.84	10	29.54	10	59.53	10	70.69	10	68.05
15	39.92	15	33.16	15	32.93	15	67.41	15	71.83	15	65.89
20	35.64	20	33.80	20	33,35	20	59.72	20		20	45,10
25	34.36	25	35.45	25	33.57	25	60.11	25		25	48.66
30	35.69	31	33.11	31	29.42	31	68.23	31	72.90	30	51.80

RAMSEY COUNTY--Continued

450026093084201. Local number, 029N23W11CCC01. LOCATION.--Lat 45°00'26", long 93°08'42", in SW\sW\sW\sW\sw. sec.11, T.29 N., R.23 W., Hydrologic Unit 07010206, at 2204 North Lexington Avenue, Roseville.

Owner: Lexington Court Apartments.

AQUIFER.--St. Peter Sandstone of Middle Ordovician Age.


WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in., depth 325 ft, cased to 192 ft.

DATUM.--Altitude of land-surface datum is 945 ft. Measuring point: Top of well cap, 1.40 ft above landsurface datum.

PERIOD OF RECORD. -- January 1971 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 104.77 ft below land-surface datum, Mar. 30, 1987; lowest, 111.30 ft below land-surface datum, Sept. 12, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

445751093072301. Local number, 029N23W25CCD01.
LOCATION.--Lat 44°57'51", long 93°07'23", SE\SW\SW\sec.25, T.29 N., R.23 W., Hydrologic Unit 07010206, at 760 North Dale Street, St. Paul.
Owner: Burlington Northern, Inc., Dale Street Shops.
AQUIFER.--Hinckley Sandstone of Late Precambrian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in., depth 999 ft, cased to 955 ft.
DATUM.--Land-surface datum is 859.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder floor, 4.60 ft above land-surface datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--December 1970, November 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 161.05 ft below land-surface datum, May 10, 1980; lowest, 226.05 ft below land-surface datum, Sept. 18, 1989.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 10 15 20 25 30 Dec 05 10 15 20 25 31	212.14 211.74 211.50 211.11 210.83 210.67 210.33 209.92 209.61 209.20 208.73	Jan 05 10 15 20 25 31 Feb 05 10 15 20 25	208.19 208.00 207.24 206.84 206.52 205.29 204.96 204.59 203.98 203.94	Mar 05 10 15 20 25 31 Apr 05 10 15 20 25	202.80 203.08 203.09 202.62 202.59 202.45 202.21 202.27 201.71 201.76 201.34	May 05 10 15 20 25 31 Jun 05 10 15 20 25	200.98 200.85 200.57 200.75 200.72 200.61 201.01 200.95 200.90 201.27 201.55	Jul 05 10 15 20 25 31 Aug 05 10 15 20 25 20 25	201.88 202.36 202.67 202.83 203.39 203.57 204.02 204.32 204.36 204.84	Sep 05 10 15 20 25 30	206.04 206.53 206.63 207.50 207.45 207.75
31	200.73	28	203.36	30	200.98	30	201.55	31	205.79		

RAMSEY COUNTY--Continued

445739093081201. Local number, 029N23W35BAD01.
LOCATION.--Lat 44°57'39", long 93°08'12", in SE\ne\nw\ sec.35, T.29 N., R.23 W., Hydrologic Unit 07010206, Victoria Street, 0.35 mi north of University Avenue.

Owner: City of St. Paul.

AQUIFER.--St. Peter Sandstone of Middle Ordovician Age.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 16 in., depth 234 ft, screened 174

DATUM. -- Altitude of land-surface datum is 888 ft. Measuring point: Top of coupling, 0.50 ft above land-surface datum.

PERIOD OF RECORD. --May 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 118.83 ft below land-surface datum, Feb. 2, 1987; lowest, 133.03 ft below land-surface datum, May 5, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	Water Level	DATE	Water Level	
Nov 06	120.42	Mar 04	118.95	Jul 16	120.54	
Jan 07	120.08	May 15	119.46	Sep 16	120.46	

450414093012701. Local number, 030N22W23CBB01.
LOCATION.--Lat 45°04'14", long 93°01'27", in NWkNWkSWk sec.23, T.30 N., R.22 W., Hydrologic Unit 07010206, Hoffman Road, 0.85 mi southwest of Highway 61.
Owner: White Bear Town Hall.
AQUIFER.--Buried sand of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 4 in., depth 96 ft, screened 91 to 96 ft.
DATUM.--Altitude of land-surface datum is 928 ft. Measuring point: Top of casing, 1.00 ft above land-

surface datum.

PERIOD OF RECORD. --April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 17.54 ft below land-surface datum, Oct. 28, 1986; lowest, 28.08 ft below land-surface datum, May 15, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL DATE		WATER LEVEL	DATE	WATER LEVEL	
Dec 04	27.07	Mar 11	27.89	Jul 22	27.24	
Jan 16	27.52	May 16	27.62	Sep 17	25.97	

450238093082501. Local number, 030N23W35BDC01. LOCATION.--Lat 45°02'38", long 93°08'25", in SWkSEkNWk sec.35, T.30 N., R.23 W., Hydrologic Unit 07010206, southeast corner of Arbogast Street and Richmond Avenue.

Owner: City of Shoreview.

AQUIFER. - Jordan Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 12 in., depth 510 ft, cased to 465 ft.
DATUM. -- Altitude of land-surface datum is 960 ft. Measuring point: Hole in shelter floor, 1.50 ft above land-

surface datum.

PERIOD OF RECORD. --April 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 129.26 ft below land-surface datum, Mar. 1, 1987; lowest, 146.01 ft below land-surface datum, July 28, 1989.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 05	140.81	Dec 05	141.72	Feb 05	142.08	Apr 05	139.30	Jun 05	139.61	Aug 05	140.17
10	140.29	10	141.74	10	142.07	10	140.18	10	141.15	10	140.05
15	139.99	15	141.79	15	142.36	15	139.18	15	142.43	15	140.28
20	140.01	20	142.00	20	142.06	20	139.52	20	142.40	20	139.91
25	140.07	25	141.66	25	142.25	25	139.45	25	141.84	25	140.40
31	139.82	31	141.57	28	141.98	30	139.80	30	143.31	31	141.50
Nov 05	141.02	Jan 05	141.62	Mar 05	141.67	May 05	138.46	Jul 05	142.21	Sep 05	139.97
10	141.50	10	141.65	10	142.42	10	137.96	10	142.12	10	139,80
15	141.67	15	141.35	15	142.50	15	139.05	15	142.12	15	139.21
20	141.45	20	141.94	20	142.09	20	138.62	20	143.17	20	138.84
25	141.53	25	142.30	25	140.18	25	139.64	25	143.16	25	137.79
30	141.91	31	142.15	31	139.29	31	139.43	31	142.39	30	137.46

REDWOOD COUNTY

441323095280701. Local number, 109N38W30BBD01.
LOCATION.--Lat 44°13'23", long 95°28'07", in SE\nW\nW\sec.30, T.109 N., R.38 W., Hydrologic Unit 07020008, at city of Walnut Grove.

Owner: Plum Creek Cheese Co.

AQUIFER .-- Sandstone of Cretaceous Age

WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 5 in., depth 240 ft, casing depth not available.

DATUM, --Altitude of land-surface datum is 1,218 ft. Measuring point: Top of well seal, 0.55 ft above

land-surface datum.

PERIOD OF RECORD.--August 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 24.20 ft below land-surface datum, April 3, 1984; lowest, 26.80 ft below land-surface datum, Sept. 26, 1984.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER		WATER	WATER	
	LEVEL DATE		LEVEL	LEVEL	
Oct 11 Nov 28	26.02 25.93	Feb 01 Jun 19	25.95 25.51	Aug 19	25.88

RICE COUNTY

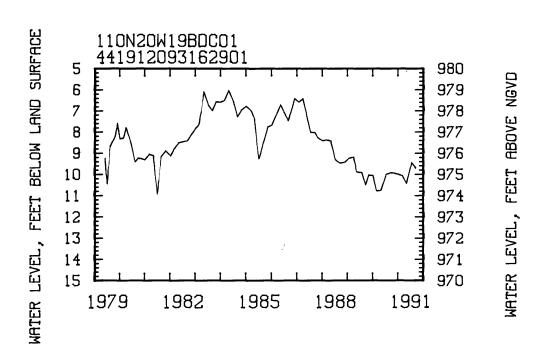
441912093162901. Local number, 110N20W19BDC01. LOCATION.--Lat 44*19'12", long 93*16'29", in SW\SE\NW\sec.19, T.110 N., R.20 W., Hydrologic Unit 07040002, just north of Faribault.

Owner: St. Lawrence Cemetery Assn.

AQUIFER.--Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 4 in., depth 400 ft, cased to 357 ft.

DATUM.--Altitude of land-surface datum is 985 ft. Measuring point: Top of casing, 1.60 ft above land-


surface datum.

PERIOD OF RECORD.--June 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.02 ft below land-surface datum, May 2, 1984; lowest: 10.94 ft below land-surface datum, July 10, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER		WATER	WATER	
	LEVEL DATE		LEVEL	LEVEL	
Nov 09	9.94 10.01	Mar 12	10.07	Jul 23 Sep 18	9.44

RICE COUNTY--Continued

442543093113701. Local number, 111N20W11CDC01.
LOCATION.--Lat 44°25'43", long 93°11'37", in SW\sE\sW\sec.11, T.111 N., R.20 W., Hydrologic Unit 07040002,
Highway 218 at Dundas.

Owner: Rollie Green.

AQUIFER. -- Prairie du Chien Group of Early Ordovician Age.
WELL CHARACTERISTICS. -- Drilled commercial artesian well, diameter 4 in., depth 158 ft, cased to 101 ft.
DATUM. -- Altitude of land-surface datum is 950 ft. Measuring point: Top of casing, 2.00 ft above landsurface datum.

PERIOD OF RECORD . -- October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 21.72 ft below land-surface datum, May 14, 1986; lowest, 27.44 ft below land-surface datum, Nov. 9, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER		WATER	WATER	
	LEVEL DATE		LEVEL	LEVEL	
Nov 09	27.44	Mar 12	26.56	Jul 23	25.13
Jan 15	26.89	May 09	24.93	Sep 18	25.56

442751093240701. Local number, 112N21W31CBB01. LOCATION.--Lat 44°27'51", long 93°24'07", in NWkNWkSWk sec.31, T.112 N., R.21 W., Hydrologic Unit 07040002, 1.0 mi south of Highway 19.

Owner: Trondhiem Church.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 4 in., depth 276 ft, cased to 232 ft.

DATUM.--Altitude of land-surface datum is 1,130 ft. Measuring point: Top of casing, 1.10 ft above

land-surface datum.

PERIOD OF RECORD. -- June 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 136.06 ft below land-surface datum, Sept. 21, 1987; lowest, 141.8 ft below land-surface datum, Oct. 30, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Nov 09	140.53	May 09	140.82	Sep 18	140.76	

SCOTT COUNTY

443732093460301. Local number, 113N24W06BCB01. LOCATION.--Lat 44°37'32", long 93°46'03", in NW\SW\NW\ sec.6, T.113 N., R.24 W., Hydrologic Unit 07020012, in Belle Plaine.

Owner: Creative Tool and Engineering. Formerly Belle Plaine Coop Creamery.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 12 in., depth 272 ft, screen information not available.

DATUM. --Altitude of land-surface datum is 840 ft. Measuring point: Top of well cap, 2.30 ft above land-

SUFFICIENT OF Land Surface datum.

Surface datum.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 116.77 ft below land-surface datum, July 11, 1983; lowest, 143.96 ft below land-surface datum, July 9, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 20	120.50	Mar 26	119.87	Jul 25	119.68
Jan 15	120.87	May 10	118.68	Sep 25	118.20

SCOTT COUNTY--Continued

443352093423001. Local number, 113N24W28DAA01.
LOCATION.--Lat 44°33'52", long 93°42'30", in NE\NE\SE\ sec.28, T.113 N., R.24 W., Hydrologic Unit 07020012, at Michelle Wildlife Area.
Owner: U.S. Geological Survey.
AQUIFER.--Ironton-Galesville Sandstones of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 450 ft, cased to 219 ft.
DATUM.--Altitude of land-surface datum is 990 ft. Measuring point: Top of well seal, 2.30 ft above land-

Surface datum.

PERIOD OF RECORD. --August 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 131.70 ft below land-surface datum, May 2, 1984; lowest, 137.07 ft below land-surface datum, Aug. 15, 1989.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 20	135.27	Jan 15	135.22	May 10	135.20	Sep 18	135.05

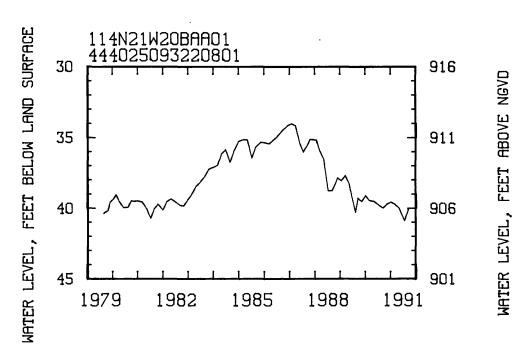
444025093220801. Local number, 114N21W20BAA01.
LOCATION.--Lat 44°40'25", long 93°22'08", in NE\nE\nW\ sec.20, T.114 N., R.21 W., Hydrologic Unit 07020012, 0.5 mi east of Credit River.

Owner: Credit River Town Hall.

AQUIFER.-Buried sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 4 in., depth 98 ft, screened 93 to 98 ft.

DATUM.--Altitude of land-surface datum is 946 ft. Measuring point: Top of casing, 1.10 ft above land-


surface datum.

PERIOD OF RECORD. --September 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 34.00 ft below land-surface datum, Feb. 3, 1987; lowest, 40.88 ft below land-surface datum, July 26, 1991.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 09	39.72	Mar 12	39.74	Jul 26	40.88
Jan 15	39.54	May 09	40.00	Sep 18	40.09

SCOTT COUNTY--Continued

443752093254401. Local number, 114N22W35DCC01.
LOCATION.--Lat 44°37′52", long 93°25′44", in SW\SW\SE\ sec.35, T.114 N., R.22 W., Hydrologic Unit 07020012, southwest of Credit River.

Owner: St. Catherine's Church.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 4 in., depth 235 ft, cased to 194 ft.

DATUM.--Altitude of land-surface datum is 1,015 ft. Measuring point: Top of casing, 1.20 ft above land-surface datum.

PERIOD OF RECORD --Sentember 1979 to current year

PERIOD OF RECORD. --September 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 83.27 ft below land-surface datum, Dec. 4, 1986; lowest, 90.30 ft below land-surface datum, Sept. 6, 1979.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

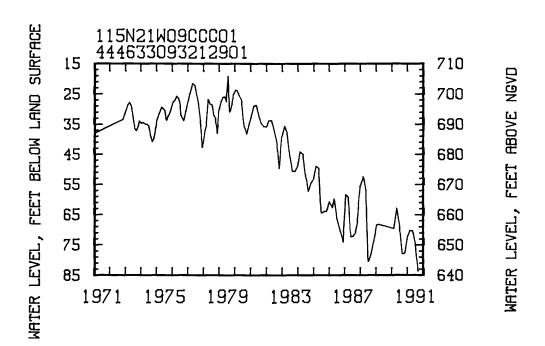
DATE	WATER		WATER		WATER	
	LEVEL DATE		LEVEL DATE		LEVEL	
Nov 09	87.85 88.10	May 09	88.17 87.96	Sep 18	87.83	

444633093212901. Local number, 115N21W09CCC01.
LOCATION.--Lat 44°46'33", long 93°21'29", in SWkSWkSWk sec.9, T.115 N., R.21 W., Hydrologic Unit 07020012, at Savage waste treatment plant.

Owner: City of Savage, well 2.

AQUIFER. --Mount Simon Sandstone of Late Cambrian Age and Hinckley Sandstone of Late Precambrian Age.

WELL CHARACTERISTICS. --Drilled public-supply artesian well, depth 846 ft, 16 in. casing 0 ft to 280 ft,
10 in. casing 250 ft to 660 ft.


DATUM. --Land-surface datum is 730 ft. Measuring point: Edge of vent pipe 0.75 ft above land-surface

PERIOD OF RECORD. -- February 1971 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 18.98 ft below land-surface datum, Aug. 9, 1979; lowest, 83.57 ft below land-surface datum, Sept. 19, 1991.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER DATE LEVEL		WATER LEVEL	
Nov 13	77.55	Mar 06	70.21	Jul 17	75.11	
Jan 08	72.20	May 10	70.19	Sep 19	83.57	

SCOTT COUNTY--Continued

444427093353901. Local number, 115N23W28BDD01. LOCATION.--Lat 44°44'27", long 93°43'53", in SE\sE\nW\ sec.28, T.115 N., R.23 W., Hydrologic Unit 07020012, Merriam Junction.

Owner: Chicago and Northwestern Transportation Company.

AQUIFER. -- Jordan Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 16 in., depth 140 ft, cased to 75 ft.

DATUM. --Altitude of land-surface datum is 758 ft. Measuring point: Top of casing, 0.90 ft above land-surface datum.

PERIOD OF RECORD. --November 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 25.75 ft below land-surface datum, Mar. 8, 1985; lowest, 43.20 ft below land-surface datum, Feb. 28, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL DATE		WATER LEVEL	DATE	WATER LEVEL
Nov 13	41.43	Mar 06	42.39	Jul 17	40.50
Jan 08	41.50	May 10	41.92	Sep 13	40.25

444427093353902. Local number, 115N23W28BDD02. LOCATION.--Lat 44°44'27", long 93°35'39", in SE\SE\NW\ sec.28, T.115 N., R.23 W., Hydrologic Unit 07020012, Merriam Junction.

Owner: Chicago and Northwestern Transportation Company.

AQUIFER. -- Ironton-Galesville Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 4 in., depth 355 ft, screened 350 to 355 ft. DATUM. --Altitude of land-surface datum is 758 ft. Measuring point: Top of casing, 1.00 ft above land-surface datum.

datum.

PERIOD OF RECORD.--November 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 20.52 ft below land-surface datum, Mar. 21, 1986; lowest, 45.28 ft below land-surface datum, July 29, 1991.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATAUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 05		Dec 05	25.85	Feb 05	23.53	Apr 05	32.23	Jul 20	39.87
10		10	25.06	10	23.49	10	29.90	25	39.97
15		15	24.71	15	23.42	15	27.57	Sep 20	32.52
20		20	24.40	20	23.16	20	30.01	25	32.31
25	33.48	25	24.23	25	23.42	25	31.70	30	32.00
31	34.23	31	24.03	28	23.15	30	30.86		
Nov 15	33.53	Jan 05	23.92	Mar 05	22.85	May 05	29.04		
20		10	23.94	10	23.27	10	30.87		
25	27.44	15	23.62	15	23,26	15	31.00		
30	28.25	20	23.72	20	22.98	20	29.25		
		25	23.77	25	22.92	25	28.57		
		31	23.62	31	33.90	31	29.81		

444427093353903. Local number, 115N23W28BDD03. LOCATION.--Lat 44°44'27", long 93°35'39", in SE\SE\NW\ sec.28, T.115 N., R.23 W., Hydrologic Unit 07020012, Merriam Junction.

Owner: Chicago and Northwestern Transportation Company.

AQUIFER.--Mount Simon Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in., depth 525 ft, screened 520 to 525 ft.

DATUM. --Altitude of land-surface datum is 758 ft. Measuring point: Top of casing, 1.00 ft above land-

surface datum.
PERIOD OF RECORD. -- November 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 33.85 ft below land-surface datum, Mar. 8, 1985; lowest, 55.12 ft below land-surface datum, Aug. 1, 1988.

DATE	WATER LEVEL	DATE	water Level	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct. 05 10 15 20 25 31 Nov 15 20 25 30	48.66 48.71 48.31 47.79 47.94 47.63 47.16 47.06 46.91 46.80	Dec 05 10 15 20 25 31 Jan 05 10 15 20 25 31	46.63 46.05 46.05 46.30 46.12 46.11 46.16 45.57 45.32 45.39	Feb 05 10 15 20 25 28 Mar 05 10 15 20 25 23 31	45.61 45.35 45.12 45.00 44.65 44.57 44.86 44.32 44.34 44.84	Apr 05 10 15 20 25 30 May 05 10 15 20 25	45.16 45.75 45.23 45.06 44.21 43.89 43.79 44.40 44.38 44.46	Jun 05 10 15 20 25 30 Jul 05 10 15 20 Sep 15 20 25 30	44.92 44.69 45.50 46.01 46.18 46.97 48.24 48.87 49.12 49.56 52.26 52.26 52.17 51.79

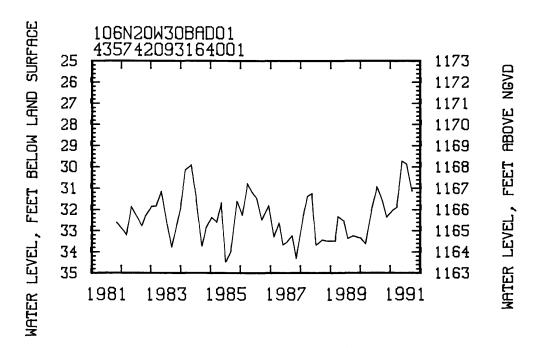
STEELE COUNTY

435742093164001. Local number, 106N20W30BAD01. LOCATION.--Lat 43°57'42", long 93°16'40", in SELNELNWL sec.30, T.106 N., R.20 W., Hydrologic Unit 07040002, at Hope.

Owner: Hope Elevator.

AQUIFER.--Galena Formation of Middle Ordovician Age.

WELL CHARACTERISTICS.--Drilled commercial artesian well, diameter 5 in., depth 215 ft, cased to 108 ft.


DATUM.--Altitude of land-surface datum is 1,198 ft. Measuring point: Top of casing, 1.00 ft above landsurface datum.

PERIOD OF RECORD. --November 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 29.72 ft below land-surface datum, May 28, 1991; lowest, 34.48 ft below land-surface datum, July 10, 1985.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL DATE		WATER LEVEL	DATE	WATER LEVEL	
Nov 19	32.36	Mar 25	31.87	Jul 23	29.88	
Jan 30	32.02	May 28	29.72	Sep 24	31.12	

435611093163001. Local number 106N20W31DCC01.
LOCATION.--Lat 43°56'11", long 93°16'30", in SW\sW\sE\sec.31, T.106 N., R.20 W., Hydrologic Unit 07040002, 1.75 mi south of city of Hope.

Owner: Owatonna Gun Club.
AQUIFER.--Galena formation of Middle Ordovician age.
WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 4 in., depth 168 ft, cased to 97 ft.
DATUM.--Altitude of land-surface datum is 1,180 ft. Measuring point: Top of casing, 1.40 ft above land-surface datum. land-surface datum.

PERIOD OF RECORD. --November 1989 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 0.66 ft below land-surface datum, May 10, 1984; lowest, 4.97 ft below land-surface datum, Jan. 9, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATAUM. WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 19	3.76	May 25	3.53	Jul 23	1.64
Jan 30	3.92	28	1.63	Sep 24	2.87

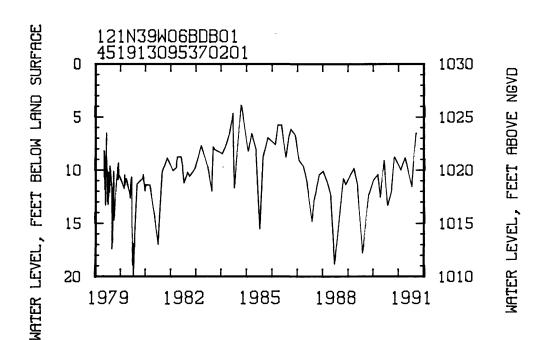
SWIFT COUNTY

451913095370201. Local number, 121N39W06BDB01. LOCATION.--Lat 45°19'13", long 95°37'02", in NW\sE\nW\ sec.6, T.121 N., R.39 W., Hydrologic Unit 07020005,

in Ambush Park.
Owner: City of Benson.
AQUIFER.--Buried sand of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 3 in., depth 143 ft, screened 123

well CHARACTERISTICS.--Drilled observation artesian well, diameter 3 in., depth 143 ft, screened 123 to 143 ft.

DATUM.--Altitude of land-surface datum is 1,030 ft. Measuring point: Top of casing 3.00 ft above land-surface datum.


REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--May 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.85 ft below land-surface datum, Oct. 25, 1984; lowest, 19.90 ft below land-surface datum, July 24, 1980.

WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Nov 08 Feb 08	8.72 9.99	Apr 11 Jul 17	8.81 11.59	Sep 18	6.52	

WABASHA COUNTY

442708092155401. Local number, 111N12W04BBD01. LOCATION.--Lat 44°27'08", long 92°15'54", in SEkNWkNWk sec.04, T.111 N., R.12 W., Hydrologic Unit 07040001, at

Lake City.

Owner: City of Lake City, well 3.

AQUIFER.--Mount Simon Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 16 in., depth 430 ft, cased to 258 ft.

DATUM.--Altitude of land-surface datum is 685 ft. Measuring point: Top of casing, 1.00 ft above land-surface

datum.

REMARKS.--Measured weekly by David Finley.
PERIOD OF RECORD.--August 1974 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.63 ft below land-surface datum, May 5, 1975; lowest, 11.50 ft below land-surface datum, Jan. 31, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 01	10.84	Dec 03	10.93	Feb 04	11.06	Apr 01	7.59	Jun 03	6.45	Aug 05	9.35
09	10.86	10	11.08	11	11.13	08	8.20	10	6.47	09	10.28
15	10.98	17	10.82	19	11.03	15	8.16	17	6.80	12	9.54
22	10.37	24	10.97	25	11.22	22	7.38	24	7.16	19	9.60
29	10.16	31	10.91	Mar 04	11.03	29	7.76	Jul 08	7.52	26	9.92
Nov 05	10.46	Jan 07	10.99	11	10.89	May 06	7.72	15	8.02	Sep 02	10.62
12	10.91	14	10.77	18	10.76	13	6.04	22	8.07	16	8.72
19	10.80	22	10.91	25	9.72	20	6.47	29	8.85	23	8.45
26	10.80	28	11.02			27	7.46			30	9.21

WADENA COUNTY

462415095003001. Local number, 134N34W19ADD01.
LOCATION.--Lat 46°24'21", long 95°00'36", in SE\sE\nE\sec.19, T.134 N., R.34 W., Hydrologic Unit 07010107,
0.05 mi north of Verndale.
Owner: U.S. Geological Survey.
AQUIFER.--Surficial outwash sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Bored observation water-table well, diameter 2 in., depth 37 ft, screened 34 to 37 ft.
DATUM.--Altitude of land-surface datum is 1,342 ft. Measuring point: Top of casing, 1.00 ft above land-surface datum.

PERIOD OF RECORD. --September 1966 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 9.18 ft below land-surface datum, May 23, 1986; lowest, 15.33 ft below land-surface datum, Mar. 10-11, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Jan 31	14.58	Apr 16	14.46	Jun 17	13.39	Aug 20	13.59
Mar 16	14.76	May 17	13.67	Jul 16	13.15	Sep 16	13.80

WASHINGTON COUNTY

445125092464001. Local number, 027N20W02BCC01. LOCATION.--Lat 44°51'25", long 92°46'40", in SWkSWkNWk sec.2, T.27 N., R.20 W., Hydrologic Unit 07030005, in Afton State Park by Afton Alps.

Owner: U.S. Geological Survey.

AQUIFER.--St. Lawrence Formation and Franconian Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 285 ft, cased to 105 ft.

DATUM.--Altitude of land-surface datum is 695 ft. Measuring point: Center of pressure guage, 3.80 ft above land-surface datum.

PERIOD OF RECORD. --March 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 33.94 ft above land-surface datum, May 2, 1980; lowest, 19.67 ft above land-surface datum, Jan.8, 1985.

WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

WATER DATE LEVEL		DATE	WATER LEVEL	DATE	WATER LEVEL
Jun 19	+26.64	Jul 18	+25.26	Sep 11	+25.26

WASHINGTON COUNTY--Continued

445125082464002. Local number, 027N20W02ECC02.
LOCATION.--Lat 44°51'25", long 92°46'40", in SW\sW\nW\sec.2, T.27 N., R.20 W., Hydrologic Unit 07030005, in Afton State Park by Afton Alps.
Owner: U.S. Geological Survey.
AQUIFER.--Ironton-Galesville Sandstones of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 4 in., depth 385 ft, cased to 365 ft.
DATUM.--Altitude of landsurface datum is 695 ft. Measuring point: Center of pressure guage, 3.80 ft

above land-surface datum.

PERIOD OF RECORD.--March 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 42.35 ft above land-surface datum, May 2, 1980; lowest, 23.81 ft above land-surface datum, Jan. 8, 1985.

WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Jun 19	+32.00	Jul 18	+30.62	Sep 11	+30.62	

445125092464003. Local number, 027N20W02BCC03. LOCATION.--Lat 44°51'25", long 92°46'40", in SWkSWkNWk sec.2, T.27 N., R.20 W., Hydrologic Unit 07030005, in Afton State Park by Afton Alps.

Owner: U.S. Geological Survey.

AQUIFER. -- Mount Simon Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 1k in., depth 535 ft, screened 530 to 535 ft.

DATUM. --Altitude of land-surface datum is 695 ft. Measuring point: Center of pressure guage, 3.40 ft

above land-surface datum.

PERIOD OF RECORD. -- March 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 22.05 ft above land-surface datum, May 2, 1980; lowest, 3.40 ft above land-surface datum, Nov. 14, 1989.

WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL			
Jun 19	+6.10	.Tu1 19	+6.04	Sep 12	+5.26	

444751092563101. Local number, 027N21W28BCC01. LOCATION.--Lat 44°47'51", 92°56'31", in SWkSWkNWk sec.28, T.27 N., R.21 W., Hydrologic Unit 07010206, 0.1 mi east of Ideal Avenue South.

Owner: Eugene Smallidge.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age and Jordan Sandstone of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled irrigation water-table well, diameter 16 in., depth 345 ft, cased

DATUM. -- Altitude of land-surface datum is 807 ft. Measuring point: Hole in pump base, 2.10 ft above land-surface datum.

PERIOD OF RECORD. --August 1977, January 1978, December 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 60.32 ft below land-surface datum, Oct. 28, 1986; lowest, 81.87 ft below land-surface datum, Aug. 3, 1977.

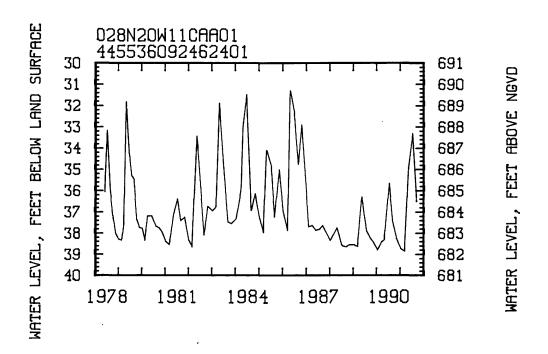
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Nov 07	67.53 70.53	May 09 Jul 26	70.99 71 43	Sep 18	72.96	

WASHINGTON COUNTY--Continued

445536092462401. Local number, 028N20W11CAA01. LOCATION.--Lat 44°55'36", long 92°46'24", in NE\nE\sW\ sec.11, T.28 N., R.20 W., Hydrologic Unit 07030005, at Lake St. Croix Beach.

Owner: Lower St. Croix Valley Fire Department.


AQUIFER. --Franconian Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS. --Drilled domestic water-table well, diameter 4 in., depth 94 ft, cased to 78 ft.
DATUM. --Altitude of land-surface datum is 720 ft. Measuring point: Top of electrical housing, 1.70 ft above land-surface datum.

PERIOD OF RECORD. -- June 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 31.27 ft, 5 below land-surface datum, May 1, 1986; lowest, 38.86 ft below land-surface datum, Mar. 11, 1991.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 06	38.24	Mar 11	38.86	Jul 16	33.29
Jan 11	38.73	May 13	34.96	Sep 17	36.50

450134092583101. Local number, 029N21W06CAD01.
LOCATION.--Lat 45°01'34", long 92°58'31", in SE\NE\SW\ sec.6, T.29 N., R.21 W., Hydrologic Unit 07010206, at 6488 North Highway 36 Boulevard.

Owner: Twenty Nine Pines Trailer Park.

AQUIFER.--St. Peter Sandstone of Middle Ordovician Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in., depth 210 ft, cased to 141 ft.

DATUM.--Altitude of land-surface datum is 980 ft. Measuring point: Hole in pump base, 2.20 ft above

land-surface datum.

PERIOD OF RECORD. --April 1974 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 71.07 ft below land-surface datum, Feb. 6, 1987; lowest, 78.40 ft below land-surface datum, Sep. 12, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Nov 06	78.36	Mar 04	77.47	Jul 16	78.33	
Jan 11	78.12	May 13	77.67	Sep 17	78.12	

WASHINGTON COUNTY--Continued

450027092552101. Local number, 029N21W10CCC01.
LOCATION.--Lat 45°00'27", long 95°55'21", in SWkSWkSwk sec.10, T.29 N., R.21 W., Hydrologic Unit 07010206,
Lake Jane Road, 0.7 mi (1.1 km) north of Highway 212.

Owner: City of Lake Elmo.

AQUIFER. --Jordan Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in., depth 348 ft, cased to 280 ft.
DATUM.--Altitude of land-surface datum is 935 ft. Measuring point: Top of well cap, 1.20 ft above land-surface datum.

PERIOD OF RECORD. --September 1977, February 1978, February 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 31.92 ft below land-surface datum, Oct. 28, 1986; lowest, 45.65 ft below land-surface datum, Sept. 28, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL DATE		WATER LEVEL	DATE	WATER LEVEL
Nov 06	44.28	Mer 04	44.77	Jul 16	44.43
Jan 11	44.50	May 13	44.82	Sep 17	44.15

450858092575001. Local number, 031N21W28ABD01. LOCATION.--Lat 45°08'58", long 92°57'50", in SE\NW\nE\ sec.28, T.31 N., R.21 W., Hydrologic Unit 07010206, County Road 8A, 1.65 mi east of Highway 61.

Owner: White Bear Gun Club.

AQUIFER.--Prairie du Chien Group of Early Ordovician Age.

WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 4 in., depth 142 ft, cased to 94 ft.

DATUM.--Altitude of land-surface datum is 939 ft. Measuring point: Top of well cap, 1.30 ft above land-surface datum.

PERIOD OF RECORD. --September 1977, February 1978, February 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 7.57 ft below land-surface datum, Oct. 28, 1986; lowest, 14.17 ft below land-surface datum, Mar. 13, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER DATE LEVEL		WATER LEVEL	
Dec 04	13.18	Mar 11	13.47	Jul 22	11.59	
Jan 16	13.32	May 16	12.07	Sep 17	10.66	

451355092532601. Local number, 032N2OW30BCD01. LOCATION.--Lat 45°13'55", long 92°53'26", in SE\sW\nW\sec.30, T.32 N., R.20 W., Hydrologic Unit 07030005, 0.25 mi north of 192nd Street.

Owner: Arno Birr.

AQUIFER. -- Prairie du Chien Group of Early Ordovician Age and Jordan Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS. -- Drilled irrigation artesian well, diameter 12 in., depth 260 ft, cased to 141 ft.
DATUM. -- Altitude of land-surface datum is 990 ft. Measuring point: Vent pipe, 1.00 ft above land-surface datum.

PERIOD OF RECORD. -- March 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 51.56 ft below land-surface datum, Oct. 28, 1986; lowest, 58.53 ft below land-surface datum, Sept. 15, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Dec 04	57.30	May 16	56.84	Jul 22	56.24	Sep 17	55.93

WATONWAN COUNTY

440037094372601. Local number, 106N32W01DDB01. LOCATION.--Lat 44°00'37", long 94°37'26", in NW\setsEk sec.1, T.106 N., R.32 W., Hydrologic Unit 07020010,

north of St. James.

Owner: U.S. Geological Survey.

AQUIFER. --Surficial outwash sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS. --Bored observation water-table well, diameter 2 in., depth 22 ft, screened 19 to 22 ft.

DATUM.--Altitude of land-surface datum is 1,056.2 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 4.80 ft above land-surface datum.

FERIOD OF RECORD.--November 1955 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.11 ft below land-surface datum, Apr. 27, 1969; lowest, 15.22 ft below land-surface datum, Mar. 7, 1990.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
	Oct 24 Nov 20 28 Dec 19	13.14 13.23 13.32 13.35	Jan 29 Feb 22 Mar 20 26	13.76 13.50 13.28 13.14	Apr 16 May 29 Jun 26	12.52 9.90 8.48	Jul 09 24 Aug 19 Sep 25	8.34 6.43 8.86 9.05
WATER LEVEL, FEET BELOW LAND SURFACE	10	06N32k 400370	101DDB 194372	01 601	980 1	.985	1990	1056.2 1051.2 1051.2 1046.2 1041.2 1036.2 1036.2
_								

440409094304901. Local number, 107N31W14DAC01.
LOCATION.--Lat 44°04'09", long 94°30'49", in SWkNEkSEk sec.14, T.107 N., R.31 W., Hydrologic Unit 07020010, 2.75 mi east of LaSalle.

Owner: William Lassas.

AQUIFER.--Sandstone of Cretaceous Age.
WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 12 in., depth 150 ft, screened 100

to 135 ft.

DATUM. --Altitude of land-surface datum is 1,008 ft. Measuring point: Vent pipe, 1.80 ft above landsurface datum.

PERIOD OF RECORD. -- September 1981 to current year. EXTREMES FOR FERIOD OF RECORD. -- Highest water level, 10.44 f lowest, 16.29 ft below land-surface datum, July 12, 1988. 10.44 ft below land-surface datum, May 9, 1983;

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	WATER LEVEL	
Nov 20 Mar 26	13.56 13.07	May 29 Jul 24	11.02 11.71	Sep 25	11.88

WATONWAN COUNTY--Continued

440133094312501. Local number, 107N31W35CAC01. LOCATION.--Lat 44°01'33", long 94°31'25", in SW&NE&SW& sec.35, T.107 N., R.31 W., Hydrologic Unit 07020010, northeast of St. Inner northeast of St. James.

Owner: Al Guyer.

AQUIFER. --Mount Simon Sandstone of Late Cambrian Age.
WELL CHARACTERISTICS. --Drilled irrigation artesian well, diameter 10 in., depth 350 ft, screened 310 to 350 ft.

DATUM .- Altitude of land-surface datum is 1,055 ft. Measuring point: Vent pipe, 1.00 ft above landsurface datum.

PERIOD OF RECORD. -- September 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 29.83 ft below land-surface datum, May 9, 1983; lowest, 41.64 ft below land-surface datum, July 12, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 20 Mar 26	33.93 33.72	May 29 Jul 24	31.93 31.95	Sep 25	32.12

WINONA COUNTY

435746092034202. Local number, 106N10W19DDA02. LOCATION.--Lat 43°57'46", long 92°03'42", in NE\SE\SE\sec. 19, T.106N., R.10W., Hydrologic Unit 07040003, at St. Charles.

Owner: City of St. Charles, Well 5.

AQUIFER.--Ironton-Galesville Sandstones of Late Cambrian Age.

WELL CHARACTERISTICS.--Drilled public supply artesian well, diameter 12 in., depth 702 ft, cased to 645 ft.

DATUM.--Altitude of land-surface datum is 1,160 ft; Measuring point: Edge of vent pipe, 1.00 ft above landsurface datum.

REMARKS. -- Water level affected by pumping.

PERIOD OF RECORD. --May 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 218.80 ft below land-surface datum, Aug. 26, 1987; lowest, 269.10 ft below land-surface datum, Oct. 28, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 02 15 22 31 Nov 06 20 27	241.40 238.88 234.52 237.22 236.90 236.35 242.88	Dec 04 11 18 26 Jan 02 10 17 24 31	240.60 241.70 240.60 239.20 239.52 239.86 239.90 243.30 240.82	Feb 05 14 21 28 Mar 07 13 20 27	242.53 257.80 248.42 244.05 243.30 241.55 244.80 244.20	Apr 03 10 17 24 May 09 16	244.80 244.10 245.50 243.30 243.80 243.10	Jun 05 12 19 25 Jul 15 22 31	247.88 250.06 249.80 250.30 268.14 249.82 254.62	Aug 06 13 20 26 Sep 10 17 24	240.52 237.06 240.00 234.90 234.12 235.17 235.40

WRIGHT COUNTY

450403093544501. Local number, 119N26W35DDA01. LOCATION.--Lat 45°04'03", long 93°54'45", in NE\SE\SE\ sec.35, T.119 N., R.26 W., Hydrologic Unit 07010204, at Montrose.

Owner: City of Montrose, well 1.

AQUIFER. --Mount Simon Sandstone of Late Cambrian Age and Hinckley Sandstone of Late Precambrian Age.

WELL CHARACTERISTICS. --Drilled unused artesian well, diameter 10 in., depth 693 ft, cased to 526 ft.

DATUM. --Altitude of land-surface datum is 1,000 ft. Measuring point: Edge of breather pipe, 1.50 ft

above land-surface datum.

PERIOD OF RECORD. --September 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 73.54 ft below land-surface datum, Sept. 28, 1981; lowest, 78.38 ft below land-surface datum, Nov. 3, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Nov 16	77.80	Mar 13	77.70	Jul 25	77.03	
Jan 17	77.71	May 14	77.21	Sep 23	76.69	

YELLOW MEDICINE COUNTY

444219096165501. Local number, 114N45W04DCD01.
LOCATION.--Lat 44°42'19", long 96°16'55", in SE\sW\sE\sec.4, T.114 N., R.45 W., Hydrologic Unit 07020003, at Canby City Park.

Owner: City of Canby, well 6.

AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 12 in., depth 62 ft, screened 44

WELL CHARACTERISTICS. --Drilled unused water-table well, diameter 12 in., depth 62 it, screened 44 to 68 ft.

DATUM. --Altitude of land-surface datum is 1,255 ft. Measuring point: Top of casing, 2.90 ft above land-surface datum.

PERIOD OF RECORD. --January 1964 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 4.67 ft below land-surface datum, June 5, 1965; lowest, 11.32 ft below land-surface datum, Oct. 7, 1976.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 23 Feb 21	8.52 8.46	Apr 04 Jun 06	7.20 4.87	Jul 12	7.80

Quality of Ground Water

May, 1967

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 BLUE EARTH COUNTY

STATION NU	MBER		LOCAL IDENT- I- FIER			DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	
440907093514401		108N-	25W-20 BE	AAAD		03-25-91 07-22-91	1550 1535	55.00	117 117	
STATION NU	MBER	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
440907093514	401	 26	695	7.3	14.0	0.0	<0.01	0.06	1.2	<0.01

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAKOTA COUNTY

STATION	NUMBE	LOCAL IDENT- I- R FIER		GEO- LOGIC UNIT	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004)
		113N19W21CCDCAC UN2		367PRDC 367PRDC	08-01-91 08-01-91	1100 1200		90 90	21 36
		113N19W21ADCCCA 207		371JRDN	08-01-91	1400		420	24
		113N18W20AAAAB 426		371JRDN	08-09-91	1100		350	21
443528092	2590701	113N18W16CADDBA 179	135 IST	367PRDC	08-09-91	1215		240	24
		113N18W18BBBBCD 104 113N18W11CCD1 PEI	113 POM NE WELL	367PRDC	08-02-91 05-02-91	1530 1045		190	24
		113N19W02BAAABB UN4		371JRDN	08-02-91	1230		300	14
			TA CO.		05-22-91	1020			==
443848093	3381501	114N-19W-30 DDDABC			03-08-91	1200		60	
443856002	572101	114N18W27DAD1 STE	VEN REC		07-16-91 05-02-91	1630 1130	9.00	60	25
		114N18W30BCCCCB 196		371JRDN	08-05-91	1400		257	25
		114N019W - SHALLOW 1		112PLSC	02-05-91	1445		9.7	==
				112PLSC	04-08-91	1330		9.7	
				112PLSC	05-15-91	1110		9.7	
443915093	3081103	114N019W - DEEP WELL	L AT F	112PLSC	02-05-91	1515		21	
				112PLSC	04-08-91	1240		21	
443924093	3010001	114N18W30AADBCB 101	038 HAR	112PLSC 367PRDC	05-16-91 08-09-91	1000		21 128	24
443926093	2010001	114N18W3OAADBAA UN2	16439 G	367PRDC	08-02-91	1145		137	24
			603 KAH	367PRDC	08-09-91	1345		147	24
		114N18W29BBBADD 194		371JRDN	08-14-91	1200		234	35
		114N19W25BBBBBD 198		367PRDC	08-05-91	1315		110	19
443933092	2533501	114N17W20CCCCBD UN4	35233 P	371JRDN	08-07-91	1230		340	21
443933093	3002802	114N018W - SITE 3 S	HALLOW	112PLSC	02-05-91	1045	- -	21	
				112PLSC	04-11-91	0950		21	
*******	2002002	114MO10H - CIFF 2 D	ppn upi	112PLSC	05-17-91	1100		21	
443933093	0002803	114N018W - SITE 3 D	CEP WEL	112PLSC 112PLSC	02-05-91 04-11-91	1105 1040		52 52	
				112PLSC	05-17-91	1150		52	
		114N17W20CCCBCC 240		367PRDC	08-07-91	1345		125	26
		114N17W19DDADDD UN2		367PRDC	08-05-91	1230		125	28
444000093	3031702	114N019W - SITE 2 S	HALLOW	112PLSC	02-05-91	1250 1030		10 10	
				112PLSC	04-10-91				
***********	2021702	114N019W - SITE 2 D	ישע פקק	112PLSC 112PLSC	05-15-91 02-05-91	1215 1320		10 42.4	
77700083	,001/03	TI-MATSM - DITE & D	DOE MEL	112PLSC	04-10-91	1130		42.4	
				112PLSC	05-16-91	1150		42.4	
444024092	2501901	114N17W15DCD1 PAU	L MAHER		05-01-91	1410			
444025092	2501201	114N17W15DDCDCB UN1	70898 M	110QRNR	07-30-91	1430		174	21
		114N17W16DDDCDC 145		371JRDN	07-30-91	1100		185	44
		114N17W14DADDAB 104		371JRDN	08-14-91	1000		318	21
444049093	0020402	114N018W - SITE 4	SHALLOW	112PLSC	02-07-91	1130		11	
				112PLSC	04-10-91	1245		11	
*********	2020402	114N018W - SITE 4	DEEP WE	112PLSC 112PLSC	05-15-91 02-07-91	1325 1215		11 23.7	
	040403	11-HU10M - 511E 4	DOEL ME	112PLSC	02-07-91	1310		23.7	
				112PLSC	05-16-91	1315		23.7	
444056092	2522101	114N17W18BCC1 CHA	RLES BA		05-01-91	1310			
444058092	2461901	114N16W17BCB1 PAT	SAGER		05-01-91	1145			
444109092	2581701	114N18W15BBDBBB 121	076 LAR	371JRDN	08-14-91	1315		235	14
444147092	2491601	114N-17W-11 ACCACB			03-11-91	1135		160	
AAA1A7003	2102001	114W21W114CC1 VDO	OK WELL		07-16-91 05-22-91	1415 1355	80.00	160	30
77714/083	104001	114N21W11ACC1 KRO	ON WELL		^J-44-87	1933			

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAKOTA COUNTY--Continued

STATION NUMBER	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	OXID- ATION RED- UCTION POTEN- TIAL (MV) (00090)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
443422093064701 443422093064901 443449093060401 443511092594201 443528092590701	436 408 209 420 433	551 505 298 428 449	7.5 7.6 7.6 7.9 7.8	7.7 8.1 8.0 8.0 8.0	0.2 0.1 -0.2 0.1 0.1	14.5 14.0 17.0 12.0 11.5	6.6 6.5 <0.1 7.0 1.7	71 68 59 50 55	24 24 21 21 22	4.8 4.1 2.8 4.5 4.1
443603093020301 443607092565601 443748093035901 443748093085001 443848093381501	484 311 520 501	545 316 542 512	7.4 7.8 7.5 7.3	7.6 7.8 7.8 7.4	0 -0.1 	10.5 10.5 11.0 10.0	0.1 <0.1 	66 47 76 76	36 12 26 20	2.3 4.0 5.3 3.4
443856092572101 443909093020401 443915093081102	690 483 498 793 875	 496 792 905	6.9 7.7 7.4 7.4 7.2	7.8 7.6 7.5 7.4	 -0.1 	16.0 10.0 11.0 8.0 6.5	3.2 <0.1 	65 73 82 99	21 24 23 29	4.4 4.2 56 53
443915093081103 443924093010001	787 601 575 567 604	823 605 592 586 620	7.1 7.5 7.4 7.3 7.5	7.5 7.6 7.6 7.6 7.6	 0.1	9.0 9.5 9.0 9.5 11.5	0 0 0.1 4.6	91 79 78 76 77	26 31 30 28 29	40 4.8 4.7 3.9 4.4
443926093010001 443927093010101 443930093004801 443932093031601 443933092533501	587 567 477 489 517	592 462 503 530	7.5 7.5 7.5 7.6 7.7	7.7 7.8 7.8 7.9	0.2 0.1 -0.1 -0.1 0.2	12.0 11.0 11.5 10.5 12.5	4.3 4.7 <0.1 <0.1 4.4	75 64 71 65	28 23 24 27	4.4 4.2 5.0 3.3
443933093002802	585 568 543 504 491	595 593 586 514 509	7.5 7.4 7.3 7.7 7.5	7.6 7.6 7.7 7.7 7.7	 	7.0 5.5 6.5 9.0 8.5	0 <0.1 0.3 0.3 <0.1	74 78 75 68 69	27 28 29 24 24	3.9 4.0 4.2 4.6 4.6
443936092533701 443939092533801 444000093031702	473 1400 865 707 705	502 1440 864 712 733	7.4 7.3 7.2 7.5 7.2	7.7 7.7 7.4 7.5 7.5	0.2 0.2 	9.0 13.0 11.5 7.5 6.0	0.1 11.0 9.2 2.5 0.8	67 140 110 95 100	25 45 41 29 32	4.8 79 12 4.7 5.2
444000093031703 444024092501901	749 506 490 480 626	770 518 515 507 652	7.1 7.7 7.6 7.5 7.5	7.4 7.7 7.7 7.7 7.7	 	7.5 9.0 8.5 10.0 9.5	0.4 0 0.6 0.1	110 66 68 68 79	32 27 26 23 32	4.9 5.0 5.0 4.9 4.0
444025092501201 444026092511701 444038092511401 444049093020402	454 435 567 538 617	511 551 542 648	7.5 7.5 7.8 7.2 7.0	7.7 7.9 7.2 7.2	0.2 0.3 0.2	12.0 12.0 10.5 6.5 7.0	9.3 8.1 8.8 	71 68 58 66	31 28 20 23	3.7 3.5 20 28
444049093020403 444056092522101	652 395 367 370 558	671 398 386 368 579	6.9 7.9 7.7 7.6 7.6	7.3 7.8 7.9 7.8 7.7	 	8.5 9.0 9.0 9.0	8.0 8.0	68 50 49 48 67	22 18 18 16 28	30 2.9 3.0 2.9 3.5
444058092461901 444109092581701 444147092491601	359 489	365 477	7.8	8.0 8.0	0.1	10.0 10.0	 	49 60	14 25	2.1 3.2
444147093182001	373 570	597	7.5 7.5	7.7		16.0 11.0	7.6	75	31	5.7

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

STATION NUMBER	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER WH IT FIELD MG/L AS HCO3 (00450)	CAR- BONATE WATER WH IT FIELD MG/L AS CO3 (00447)	ALKA- LINITY WAT WH TOT IT FIELD MG/L AS CACO3 (00419)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3 (00410)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
443422093064701 443422093064901 443449093060401 443511092594201 443528092590701	1.0 1.0 0.9 2.5 0.9	246 222 232 184 165	 	204 183 191 152 135	202 182 190 151 135	197 195 120 155 142	33 32 44 23 61	19 14 0.9 13 15	0.2 0.2 0.2 0.1 0.2	15 14 12 11 11
443603093020301 443607092565601 443748093035901 443748093085001 443848093381501	1.3 0.5 1.5 2.3	322 346 	7 	268 283 	264 284 	264 153 249 247	36 18 26 11	0.6 2.4 1.1 18	0.2 0.2 0.2 0.1	11 15 13 15
443856092572101 443909093020401 443915093081102	0.7 1.4 5.6 4.7	310 	 	255 	254 	165 291 311	24 21 70 65	14 0.1 45 80	0.1 0.2 0.2 0.1	16 13 18 18
443915093081103 443924093010001	3.9 1.7 1.7 1.4 1.1	 285	 	 235	 234	294 265 264 265 241	67 58 61 53 27	63 12 12 10 15	0.2 0.2 0.2 0.1 0.2	18 26 25 24 14
443926093010001 443927093010101 443930093004801 443932093031601 443933092533501	1.1 1.3 1.4 0.9	292 278 327 235	 	239 225 272 196	239 228 268 193	241 209 264 201	28 17 15 24	12 13 0.9 1.4	0.1 0.1 0.2 <0.1	14 13 21 13
443933093002802 443933093002803	1.2 1.1 1.2 1.4 1.4	 	 	 		242 247 241 269 268	28 28 23 22 18	14 15 17 3.0 3.2	<0.1 0.2 0.2 0.1 0.2	14 13 13 20 20
443936092533701 443939092533801 444000093031702	1.4 16 2.6 1.0 0.9	376 303 	 	308 250 	308 248 	268 316 257 213 231	17 34 37 33 85	0.4 160 50 14 17	0.2 0.1 0.1 <0.1 0.1	18 18 15 21 20
444000093031703 444024092501901	0.8 2.0 1.9 1.6 0.7	 	 	 	 	280 281 280 280 230	100 16 11 9.7 29	16 3.0 2.3 1.9	<0.1 0.1 0.2 0.2 0.1	20 25 26 24 17
444025092501201 444026092511701 444038092511401 444049093020402	0.9 1.2 3.0 3.2	252 242 	 	203 198	206 198 	210 191 183 190	23 57 24 24	16 13 14 24 67	0.1 0.1 <0.1 <0.1	15 11 14 14
444049093020403 444056092522101	3.1 0.9 0.9 0.7 0.8	 	 	 	 	174 167 164 160 199	24 24 22 19 22	87 4.9 5.3 3.8 20	<0.1 0.1 0.2 0.1 0.2	13 17 18 17 14
444058092461901 444109092581701 444147092491601	0.7 3.7	270	 	 221 	 221 	132 227	14 11	8.9 6.0	0.1 0.2	17 14
444147093182001	1.9					307	14	14	0.2	24

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

STATION NUMBER	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	TRITIUM IN WATER MOLE- CULES (TU)
443422093064701 443422093064901 443449093060401 443511092594201 443528092590701	321 327 243 255 298	<0.01 <0.01 <0.01 <0.01 <0.01	8.5 7.2 <0.05 8.1 3.7	<0.01 <0.01 0.03 <0.01 <0.01	 	0.02 0.02 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	10 10 1700 7 11	<1 <1 23 3 <1	30.1 34.4 1.9 53.4 26.4
443603093020301 443607092565601 443748093035901 443748093085001 443848093381501	293 324 	<0.01 0.01 <0.01 <0.01 <0.01	0.12 0.05 <0.05 <0.05 4.1	0.01 0.10 0.07 0.05 <0.01	<0.20 0.40	<0.01 0.04 <0.01 0.02	<0.01 0.01 <0.01 0.02 0.02	120 2700 	-18 -63 	9.9
443856092572101 443909093020401 443915093081102	280 	<0.01 <0.01 <0.01 0.02 0.01	4.4 13 <0.05 0.60 0.12	<0.01 <0.01 0.08 <0.01 0.07	0.40 0.30 0.20	0.03 0.01 <0.01 0.02	<0.01 0.02 <0.01 <0.01 <0.01	1300	52 	 <0.8
443915093081103 443924093010001	 346	0.02 <0.01 <0.01 0.01 <0.01	0.24 <0.10 <0.05 <0.05 14	0.09 0.13 0.14 0.14 <0.01	0.60 0.30 0.40 0.30	<0.01 0.03 0.02 0.02 0.01	<0.01 0.03 0.01 0.02 <0.01	 9	 <1	 18.4
443926093010001 443927093010101 443930093004801 443932093031601 443933092533501	327 267 309 314	<0.01 <0.01 <0.01 <0.01	2.0 11 <0.05 <0.05 10	<0.01 0.10 0.18 <0.01	 	0.01 0.01 0.01 <0.01	0.01 <0.01 <0.01 <0.01	3 1300 670 11	<1 80 430 5	17.1 <0.8 1.0 25.9
443933093002802 443933093002803	 	0.03 0.02 0.03 <0.01 <0.01	<7.8 7.3 9.3 <0.10 <0.05	<0.01 <0.01 0.03 0.07 0.06	1.2 0.30 0.90 0.90 <0.20	0.02 0.02 0.02 0.03 0.01	0.02 <0.01 <0.01 0.02 <0.01		 	
443936092533701 443939092533801 444000093031702	908 496 	<0.01 <0.01 <0.01 <0.01 <0.01	<0.05 40 22 25 13	0.09 <0.01 <0.01 <0.01 <0.01	0.50 1.2 0.50	<0.01 0.60 <0.01 0.01 0.02	<0.01 0.57 <0.01 0.01 <0.01	11 35	<1 <1 	<30.7 37.3
444000093031703 444024092501901	 	0.01 <0.01 <0.01 <0.01 0.01	5.5 <0.10 <0.05 <0.05 18.0	0.02 0.17 0.16 0.21 0.02	0.40 0.60 <0.20 0.30 0.70	0.02 0.01 0.02 0.03 0.02	<0.01 0.01 <0.01 0.02 <0.01	 	 	
444025092501201 444026092511701 444038092511401 444049093020402	324 335 	<0.01 0.63 0.35 0.18	18 2.8 6.0 11 4.2	<0.01 <0.01 <0.01 <0.01	 0.80 0.90	<0.01 <0.01 0.05 0.06	<0.01 <0.01 0.04 0.03	5 7 	<1 73	22.8 17.5
444049093020403 444056092522101		0.22 <0.01 <0.01 0.02 <0.01	5.1 4.6 4.2 4.0 16	0.03 0.02 <0.01 0.02 0.01	0.70 0.40 0.30 1.3 0.60	0.04 0.05 0.04 0.04 0.01	0.04 0.04 0.02 0.03 <0.01			
444058092461901 444109092581701 444147092491601 444147093182001	286 	0.03 <0.01 0.01 <0.01 <0.01	9.0 5.2 5.7 5.4 0. 2 7	0.04 0.01 <0.01 0.01 0.13	0.40 <0.20	0.04 0.02 0.02	0.03 0.01 0.01 <0.01 0.02	14 	<1 	21.3

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

STATION NUMBER	LOCAL IDENT- I- FIER	GEO- LOGIC UNIT	DATE	TIME	DEPTH OF WELL, TOTAL (FEET)	PRIOR TO SAM- PLING (MIN)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	
444156092490201 114N17 444209092462101 114N16 444230092571101 114N18 444240092565701 114N18 444250093154901 114N20	W6DDD1 MCNAMARA W02CBBCCA 136495 R W02BCDAAC 170875 S	WE ON 367PRDC IM 371JRDN	07-30-91 05-01-91 08-06-91 08-06-91 05-22-91	1330 1100 1315 1200 1300	330 234 320 	21 51 18	362 459 496 504 545	
444252092465401 114N16 444304093055401 115N19			08-07-91 05-22-91	1100 1140	240	21	400 492	
SP CIF CO DUC ANC STATION NUMBER LA (US/ (900	IC N- PE T- PH LA E (STAND- (STA B ARD AR CM) UNITS) UNI	B UCTION ND- POTEN- D TIAL TS) (MV)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS- SOLVED ((MG/L AS MG)	SODIUM, S. DIS- D. SOLVED SOI (MG/L (M. AS NA) AS	IAS- IUM, IS- LVED G/L K) 935)
444209092462101 4 444230092571101 5 444240092565701 5	33 7.6 7. 78 7.6 7. 06 7.6 7. 16 7.7 7. 64 7.3 7.	9 8 0.2 9 -0.2	12.0 10.0 11.5 11.0 14.0	<0.1 6.6 <0.1	58 59 68 64 79	23 21 23 31 26	4.0 0 3.2 1 3.0 1	.2 .6 .0 .3
	11 7.6 8. 15 7.4 7.		10.5 9.5	<0.1 	54 71	21 23		. 0 . 5
STATION NUMBER	BICAR- BONATE LINITY WATER WAT WH WH IT TOT IT FIELD FIELD MG/L AS HCO3 CACO3 (00450) (00419)	WAT WH LII TOT FET I FIELD (I MG/L AS A CACO3 CA	LAB DIS MG/L SOI AS (MC ACO3) AS S	LVED SOI	DE, RID S- DI LVED SOL G/L (MG CL) AS	E DIS S- SOLV VED (MG /L AS F) SIO	- AT 180 ZED DEG. C ZL DIS- SOLVED Z) (MG/L)	
444156092490201 444209092462101 444230092571101 444240092565701 444250093154901	244 202 266 218 332 272 	218 272	194 40 188 17 225 23 258 16 282 31	7 8. 3 8. 5 1.	7 0. 3 0. 8 0.	1 16 1 16 1 11	247 272 302	
444252092465401 44430409305 5 401	254 210 		186 17 256 20				251	
STATION NUMBER	NITRO- NITRO- GEN, GEN, NITRITE NO2+NO3 DIS- DIS- SOLVED SOLVED (MG/L (MG/L AS N) AS N) (00613) (00631)	GEN, GEI AMMONIA MOI DIS- ORG SOLVED DI (MG/L (I AS N) AS	NÍA + PHOI GANIC D' IS. SOI MG/L (MC SN) AS	IS- DIS LVED SOLV G/L (MG/ P) AS I	RUS THO, IRO S- DI VED SOL' /L (UG	S- DIS VED SOLV /L (UG FE) AS	E, WATER S- MOLE- VED CULES (L (TU) AN)	
444156092490201 444209092462101 444230092571101 444240092565701 444250093154901	<pre><0.01 <0.05 <0.01 11 <0.01 6.2 <0.01 <0.05 <0.01 <0.05</pre>	<0.01 <0.01 <0.01	<0.0 0.50 0.0 0.0 0.30 0.0	02 0.0 02 0.0 01 <0.0	01 - 02 01 180	4 <	15.4 2 <0.8	
44425209246 5 401 444304093055401	<0.01 <0.05 <0.01 1.9		<0.0 0.60 0.0					

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAKOTA COUNTY--Continued

STATION NUMBER	LOCAL IDENT- I- FIER	GEO- LOGIC UNIT	DATE	TIME	DEPTH OF . WELL, TOTAL (FEET) (72008)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	
444312092515702 115N01 444333092593401 115N18 444513093185401 115N21	W33BCC1 SWOBO		02-07-91 04-10-91 05-17-91 05-02-91 08-13-91	1445 1425 1400 1230 1300	59 59 59 193	 36	907 722 654 751 589	•
444552093080001 115N19 444601093082901 115N19 444634093041401 27N22W 444638093034401 27N22W 444843093045801 27N22W	W18DCA1 DON G W18DAA1 MARV 32DCC1 PHILLI 33CCA1 BOB PL	RUNTH IN KA P BRA AN WE	05-23-91 05-23-91 06-05-91 05-02-91 05-23-91	1020 1115 1100 1425 1245	 	 	477 531 556 568 613	
445000093055701 27N22W 445053093055001 27N22W 445134093082001 27N23W	6CDC1 MIKE T	AURIN	06-04-91 06-05-91 06-04-91	1015 1000 1115			483 822 635	
SP CIF CO DUC ANC STATION NUMBER LA (US/ (900	IC N- T- PH E (STAND- () B ARD CM) UNITS)	OXID- ATION PH RED- LAB UCTION STAND- POTEN- ARD TIAL UNITS) (MV) 00403) (00090)	- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
7 7 444333092593401 7	03 7.5 52 7.4 06 7.4 78 7.3	7.6 7.7 7.7 7.5	13.0 8.5 6.0 9.0	7.7 8.3 9.2	83 69 71 100	27 23 25 34	55 53 40 5.7	4.3 3.0 2.8 2.1
444552093080001 4 444601093082901 5 444634093041401 5 444638093034401 5	98 7.6 97 7.7 56 7.6 57 7.4 95 7.4 46 7.6	7.8 -0.1 7.7 7.7 7.6 7.6 7.8	11.5 10.0 9.5 11.0 9.5 10.5	<0.1 0.6 	81 64 72 77 80 82	27 25 28 29 27 34	6.9 3.4 3.7 5.3 3.7	3.8 1.9 1.6 1.7 1.6 2.2
445053093055001 8	31 7.5 27 7.3 43 7.4	7.7 7.6 7.7	10.5 11.5 10.5	4.3 10.6 0	74 99 89	24 40 38	3.7 13 12	1.6 1.9 1.9
STATION NUMBER	BICAR- BONATE LINIT WATER WAT W WH IT TOT I FIELD FIELD MG/L AS MG/L HC03 CACO (00450) (0041	Y LINITY A H WAT WH LI T TOT FET D FIELD (AS MG/L AS 3 CACO3 (LAB DI (MG/L SO AS (M CACO3) AS	FATE RI S- DI LVED SO G/L (M SO4) AS	DE, RI S- D LVED SO G/L (M CL) AS	DE, DI IS- SO LVED (M G/L A F) SI	LVED DEC G/L D: S SOI O2) (M	IDUÉ
444312092515702 444333092593401 444513093185401	 333 27	 3 273	210 222 246	39 38 33	74 0 57 0 28 0		3 · 5 · 5 ·	 40
444552093080001 444601093082901 444634093041401 444638093034401 444843093045801	 	 	244 253 256 259	31 33 29 29	5.6 <0 12 <0 9.2 <0 13 0	.1 1 .1 1 .1 1 .2 2	6 7 7	
44500093055701 445053093055001 445134093082001		 	244 297 299		75 <0	.1 2	ĭ ·	

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAKOTA COUNTY--Continued

STATION NUMBER	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	TRITIUM IN WATER MOLE- CULES (TU) (07012)
444312092515702	<0.01	9.6	<0.01	1.2	0.54	0.50			
	<0.01	6.9	<0.01	0.60	0.43	0.43			
	0.01	4.8	0.03	0.80	0.48	0.48			
444333092593401	0.01	26	0.02	0.60	0.02	<0.01			
444513093185401	<0.01	<0.05	0.19		0.02	<0.01	910	120	22.5
444552093080001	<0.01	0.08	0.04	<0.20	0.02	<0.01			
444601093082901	<0.01	3.3	0.02	0.50	0.01	<0.01			
444634093041401	<0.01	3.3	0.01	0.30	<0.01	<0.01			
444638093034401	0.01	5.4	0.02	0.40	0.01	<0.01			
444843093045801	<0.01	0.06	0.13	0.30	0.03	<0.01			
445000093055701	0.02	1.1	<0.01	<0.20	<0.01	<0.01			
445053093055001	<0.01	3.7	0.02	2.3	0.03	0.02			
445134093082001	<0.01	<0.05	0.04	<0.20	0.02	0.02			

ANALYSIS FOR ORGANIC CHEMICALS

STATION NUMBER	DATE	TIME	1,2,4- TRI- CHLORO- BENZENE TOTAL (UG/L) (34551)	1,2,5,6 -DIBENZ -ANTHRA -CENE TOTAL (UG/L) (34556)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L) (34536)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L) (34566)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L) (34571)	2,4,6- TRI- CHLORO- PHENOL TOTAL (UG/L) (34621)	2,4-DI- METHYL- PHENOL TOTAL (UG/L) (34606)	2,4-DI- CHLORO- PHENOL TOTAL (UG/L) (34601)
444000093031702)2-05-91)4-10-91)5-15-91)2-05-91	1250 1030 1215 1320	<5.0	<10.0	<5.0	<5.0	<5.0	<20.0	<5.0	<5.0
444000093031703	04-10-91 05-16-91	1130 1150	<5.0	<10.0	<5.0	<5.0	<5.0	<20.0	<5.0	<5.0
	2,4,- DI-	2,4-DI-	2,6-DI-	2- CHLORO-	2-	2-	4,6- DINITRO	4- BROMO- PHENYL	4- CHLORO- PHENYL	4-
STATION NUMBER		2,4-DI- NITRO- TOLUENE TOTAL (UG/L) (34611)	2,6-DI- NITRO- TOLUENE TOTAL (UG/L) (34626)		2- CHLORO- PHENOL TOTAL (UG/L) (34586)	2- NITRO- PHENOL TOTAL (UG/L) (34591)		BROMO-	CHLORO-	4- NITRO- PHENOL TOTAL (UG/L) (34646)
STATION NUMBER 444000093031702	DI- NITRO- PHENOL TOTAL (UG/L)	NÍTRO- TOLUENE TOTAL (UG/L)	NÍTRO- TOLUENE TOTAL (UG/L)	CHLORO- NAPH- THALENE TOTAL (UG/L)	CHLORO- PHENOL TOTAL (UG/L)	NITRO- PHENOL TOTAL (UG/L)	DINITRO -ORTHO- CRESOL TOTAL (UG/L)	BROMO- PHENYL PHENYL ETHER TOTAL (UG/L)	CHLORO- PHENYL PHENYL ETHER TOTAL (UG/L)	NITRO- PHENOL TOTAL (UG/L)

QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

STATION NUMBER	ACE- NAPHTH- ENE TOTAL (UG/L) (34205)	ACE- NAPHTH- YLENE TOTAL (UG/L) (34200)	ANTHRA- CENE TOTAL (UG/L) (34220)	BENZO- A- PYRENE TOTAL (UG/L) (34247)	BENZO B FLUOR- AN- THENE TOTAL (UG/L) (34230)	BENZO K FLUOR- AN- THENE TOTAL (UG/L) (34242)	BENZO A ANTHRAC ENE1,2- BENZANT HRACENE TOTAL (UG/L) (34526)	BENZOGH I PERYL ENE1,12 -BENZOP ERYLENE TOTAL (UG/L) (34521)	BIS (2- CHLORO- ETHOXY) METHANE TOTAL (UG/L) (34278)
444000093031702	<5.0	<5.0	<5.0	<10.0	<10.0	<10.0	<10.0	<10.0	<5.0
444000093031703	<5.0	<5.0	<5.0	<10.0	<10.0	<10.0	<10.0	<10.0	<5.0
STATION NUMBER	BIS (2- CHLORO- ISO- PROPYL) ETHER TOTAL (UG/L) (34283)	BIS(2- ETHYL HEXYL) PHTHAL- ATE TOTAL (UG/L) (39100)	BIS 2- CHLORO- ETHYL ETHER TOTAL (UG/L) (34273)	CHRY- SENE TOTAL (UG/L) (34320)	DIETHYL PHTHAL- ATE TOTAL (UG/L) (34336)	DI- METHYL PHTHAL- ATE TOTAL (UG/L) (34341)	DI-N- BUTYL PHTHAL- ATE TOTAL (UG/L) (39110)	DI-N- OCTYL PHTHAL- ATE TOTAL (UG/L) (34596)	FLUOR- ANTHENE TOTAL (UG/L) (34376)
444000093031702	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<10.0	<5.0
444000093031703	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<10.0	<5.0
STATION NUMBER	FLUOR- ENE TOTAL (UG/L)	HEXA- CHLORO- BENZENE TOTAL	HEXA- CHLORO- BUT- ADIENE TOTAL	HEXA- CHLORO- CYCLO- PENT- ADIENE TOTAL	HEXA- CHLORO- ETHANE TOTAL	INDENO (1,2,3- CD) PYRENE TOTAL	ISO- PHORONE TOTAL	N-BUTYL BENZYL PHTHAL- ATE TOTAL	N- NITRO- SODI-N- PROPYL- AMINE TOTAL
	(34381)	(UG/L) (39700)	(UG/L) (39702)	(UG/L) (34386)	(UG/L) (34396)	(UG/L) (34403)	(UG/L) (34408)	(UG/L) (34292)	(UG/L) (34428)
444000093031702					(UG/L)	(UG/L)		(UG/L)	
44400093031702 444000093031703	(34381)	(39700)	(39702)	(34386)	(UG/L) (34396)	(UG/L) (34403)	(34408)	(UG/L) (34292)	(34428)
	(34381) <5.0	(39700) <5.0	(39702) <5.0	(34386) <5.0	(UG/L) (34396) <5.0	(UG/L) (34403) <10.0	(34408) <5.0	(UG/L) (34292) <5.0	(34428) <5.0
444000093031703	(34381) <5.0 <5.0 N-NITRO -SODI- METHY- LAMINE TOTAL (UG/L)	(39700) <5.0 <5.0 N-NITRO -SODI- PHENY- LAMINE TOTAL (UG/L)	(39702) <5.0 <5.0 NAPHTH- ALENE TOTAL (UG/L)	(34386) <5.0 <5.0 NITRO- BENZENE TOTAL (UG/L)	(UG/L) (34396) <5.0 <5.0 PARA- CHLORO- META CRESOL TOTAL (UG/L)	(UG/L) (34403) <10.0 <10.0 PENTA- CHLORO- PHENOL TOTAL (UG/L)	(34408) <5.0 <5.0 PHENAN- THRENE TOTAL (UG/L)	(UG/L) (34292) <5.0 <5.0 PHENOL (C6H- 50H) TOTAL (UG/L)	(34428) <5.0 <5.0 PYRENE TOTAL (UG/L)

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 GOODHUE COUNTY

STATION NUMBER		LOCAL IDENT- I- FIER	CDE4		DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	
442003092423501		6W-14 BC			03-13-91 07-17-91	1305 1730	85.00	200	
442503092434801	111N-1	6W-15 CC	CDCC		03-13-91 07-17-91	1515 1630	210.00	350 350	
STATION NUMBER		SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
442003092423501						<0.01	0.07	<0.01	<0.01
442503092434801	27 25	356 531	7.2 7.1	13.0 14.5	0.1	<0.01 <0.01 <0.01	<0.05 0.18 0.05	0.02 <0.01 0.01	<0.01 <0.01 <0.01
			HOU	STON COUN	NTY				
STATION NUMBER	:	LOCAL IDENT- I- FIER			DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	
434613091350501	104N-0	6W-32 BC	ABC		03-12-91 07-18-91	1250 1500	135.0	175 175	
STATION NUMBER		SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
434613091350501	 27	530	7.1	14.0	13.7	0.01 <0.01	3.5 3.7	<0.01 <0.01	0.04 <0.01

QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

JACKSON COUNTY

STATION NUMBER	ID	LOCAL DENT- I- FIER		DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	
433755095113201 434028094590801		SW-17 CCAB		03-26-91 03-26-91 07-23-91 03-22-91	0930 0935 1317 1805	9.32	26 26 26 80	
STATION NUMBER	PERIOD C PRIOR C TO SAM- D PLING A (MIN) (U	SPE- CIFIC CON- PH DUCT- (STAND- INCE ARD UNITS) 00095) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
433755095113201					<0.01	2.4	<0.01	0.02
434028094590801		7.3 7.3 080 6.7 11	10.5 1053.0	0.4	0.01 <0.01 <0.01	6.7 <0.05 <0.05	0.02 2.1 1.9	0.03 <0.01 <0.01
		MU	RRAY COUN	ITY				
STATION NUMBER	ID	OCAL DENT- I- FIER		DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)
435133095360801	105N-40	W-36 BBCCDC		03-28-91	1320		37.00	1515
435625095540301	106N-42	2W-33 CBCCAA		07-23-91 03-21-91 07-23-91	1815 1235 1615	31.00 15.00	37.00 42.00 42.00	1515 1695 1695
STATION NUMBER	PERIOD C PRIOR C TO SAM- D PLING A (MIN) (U	SPE- CIFIC CON- PH OUCT- (STAND- NNCE ARD US/CM) UNITS) 00095) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
105100005050000								
435133095360801		30 7.1	13.0	3.7	<0.01 <0.01	0.94 1.4	0.09 0.01	<0.01 <0.01

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

OTUBIED COOKII	OLMSTED	COUNTY
----------------	---------	--------

STATION NUMBER	ID	OCAL DENT- I- IER		GEO- LOGIC UNIT	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004)	
440233092115101 440305092273901 440330092225201 440335092243401	107N14W23DDDC 107N13W21ADCA	CBB 120037 AAD 105490	DON 36	67PRDC 67PRDC	03-12-91 07-18-91 08-22-91 08-21-91 08-22-91	1535 1050 1430 1515 1130	165.00 	262 262 250 395 220	25 24 36 27	
440336092241801 440343092160001 440346092155501 440347092181801 440350092155801	107N12W21ABCA 107N12W21ABAC 107N-12W-19AE	ADA 101409 CAD 220756 SAD UNW0025	VER 3: RIG 3: 4 R 3:	71JRDN 67PRDC 64GLEN	08-22-91 08-19-91 08-20-91 08-20-91 08-19-91	1245 1730 1230 1530 1245	 	292 500 296 70 191	21 30 21 21 21	
440352092155701 440353092152001 440354092180301 440411092255801 440412092273201	107N12W15CCDC 107N12W18DDDC 107N13W18CABD	CAD UN11982 CBD 105012 CW00359 DC	4 V 3: BRO 3: BLA 3:	71JRDN 67PRDC 67PRDC	08-19-91 08-19-91 08-20-91 08-23-91 08-21-91	1415 1545 1400 1745 1045	 	295 600 350 100 156	21 21 24 21 21	
440415092231901 440417092255701 440433092252301 440455092120601	107N13W18CABE 107N13W18AACC	BAA UN22861 C W01319 SE	.6 L 3		08-21-91 08-20-91 08-23-91 03-11-91 07-18-91	1815 1645 1215 1815 1705	 125.00	560 140 60 520 520	21 21 27 20	
440534092261701 440535092233501 440545092264801	107N13W09BABE	3 421071 KI	ELY 3	71JRDN	08-21-91 08-20-91 08-21-91	1330 1115 1200	 	290 620 384	21 21 21	
STATION NUMBER	CIFIC CON- I DUCT- A R ANCE (US/CM) (U	ANCE (SI LAB A JS/CM) UN	RD ITS)	PH LAB (STAND- ARD UNITS) (00403)	OXID- ATION RED- UCTION POTEN- TIAL (MV) (00090)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
STATION NUMBER 440233092115101 440305092273901 440330092225201 440335092243401	CIFIC CON- I DUCT- A R ANCE (US/CM) (U	CIFIC CON- DUCT- E ANCE (SI LAB A JS/CM) UN	AND- RD IITS)	LAB (STAND- ARD UNITS)	ATION RED- UCTION POTEN- TIAL (MV)	ATURE WATER (DEG C)	DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)
440233092115101 440305092273901 440330092225201	CIFIC CON- I DUCT- A ANCE (US/CM) (US/	CIFIC CON- DUCT- E ANCE (SI LAB A 15/CM) UN 90095) (00	AND- RD (ITS) (400) 7.1 7.2 7.2	LAB (STAND-ARD UNITS) (00403)	ATION RED- UCTION POTEN- TIAL (MV) (00090)	ATURE WATER (DEG C) (00010) 13.0 12.5 11.0	DIS- SOLVED (MG/L) (00300) 9.5 7.9 <0.1	DIS- SOLVED (MG/L AS CA) (00915) 110 73	SIUM, DIS- SOLVED (MG/L AS MG) (00925)	DIS- SOLVED (MG/L AS NA) (00930)
440233092115101 440305092273901 440330092225201 440335092243401 440336092241801 440343092160001 440346092155501 440347092181801	CIFIC CON- I DUCT- A ANCE (US/CM) (US/	CIFIC CON- DUCT - E ANCE (SI LAB A JS/CM) UN GO	AND- RD (ITS) (400) 7.1 7.2 7.2 7.2 7.3 7.3 7.3	LAB (STAND-ARD UNITS) (00403) 	ATION RED- UCTION POTEN- TIAL (MV) (00090) 0.4 -0.1 0.2 0.7 -0.1 -0.1	ATURE WATER (DEG C) (00010) 13.0 12.5 11.0 12.0 10.0 10.0 9.5	DIS- SOLVED (MG/L) (00300) 9.5 7.9 <0.1 10.3 <0.1 3.1 <0.1 7.6	DIS- SOLVED (MG/L AS CA) (00915) 110 73 120 90 95 92 90	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 24 21 14 29 21 21 21 21	DIS- SOLVED (MG/L AS NA) (00930) 5.2 2.7 8.1 3.5 4.6 3.7 5.9
440233092115101 440305092273901 440330092225201 440335092243401 440343092160001 440343092155501 440347092181801 440350092155801 440352092155701 440353092152001 440354092180301 440411092255801	CIFIC CON- I DUCT- A NCE (US/CM) (US/C	CIFIC CON- CON- DUCT- E CON- LAB A J SO(95) (00 711 502 791 600 618 585 597 780 678 480 487	AND-RD (ITS) (400) (1015) (400) (1015) (400) (1015)	LAB (STAND-ARD UNITS) (00403) 	ATION RED- UCTION POTEN- TIAL (MV) (00090) 0.4 -0.1 0.2 0.7 -0.1 -0.1 0.2 0.2	ATURE WATER (DEG C) (00010) 13.0 12.5 11.0 12.0 12.0 10.0 16.0 9.5 11.5 10.0 10.5 11.5 11.0	DIS- SOLVED (MG/L) (00300) 9.5 7.9 <0.1 10.3 <0.1 3.1 <0.1 7.6 8.4 10.6 6.2 7.8 9.5	DIS- SOLVED (MG/L AS CA) (00915) 110 73 120 90 95 92 90 120 110 75 70	SIUM, DIS- SOLVED (MG/L AS M3) (00925) 24 21 14 29 21 21 21 25 22 19 22	DIS- SOLVED (MG/L AS NA) (00930) 5.2 2.7 8.1 3.5 4.6 3.7 5.9 15 6.6 2.2 2.3

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

OLMSTED COUNTY--Continued

STATION	numb e r	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER WH IT FIELD MG/L AS HCO3 (00450)	ALKA- LINITY WAT WH TOT IT FIELD MG/L AS CACO3 (00419)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3 (00410)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
440233092	115101										
440305092	273901	1.6	373	306	306	276	54	14	0.1	13	450
440330092	225201	1.6	321	264	263		22	0.60	0.2	9.7	270
440335092	243401	12	370	297	303	306	38	31	0.2	14	462
440336092		1.7	354	286	290		48	4.4	0.2	11	341
440343092		0.6	339	278	278		64	8.9	0.1	14	344
440346092		0.6	337	276	276	253	44	6.2	0.2	14	. 351
440347092		1.3				275	19	15	0.2	20	349
440350092	2155801	1.8	374	311	307	317	35	41	0.1	17	459
440352092	155701	1.5	352	293	289		27	23	0.1	16	393
440353092		0.5	316	261	259		17	0.80	0.2	15	271
440354092		0.7	316	257	259	249	16	1.0	0.1	13	259
440411092				237		270		13			
440412092		1.1	295	237	242		20	8,4	0.1	12	305
110122002			203	207				٠,٠	٠		000
440415092	231901	1.1	3 3 2	273	2 72		13	0.70	0.2	10	267
440417092	255701	1.4	322	266	264		20	13	0.1	13	359
440433092	252301	24	411	339	337	345	32	30	0.2	20	491
440455092	120601										
,											
440534092	261701	1.2	344	284	282		24	7.5	0.1	13	327
440535092			344	284 283				1.3			327 277
		1.1			279		14 19		0.2	11 11	
440545092	204001	1.2	32 8	271	269		19	0.80	0.2	11	276

	NITRO-	NITRO-	NITRO-		PHOS-				TRITIUM
	GEN,	GEN,	GEN,	PHOS-	PHORUS		MANGA-		IN
	NITRITE	NO2+NÓ3	AMMONÍA	PHORUS	ORTHO.	IRON.	NESE.		WATER
	DIS-		MOLE-						
	SOLVED	TRITIUM	CULES						
STATION NUMBER	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	TOTAL	(TU)
	AS N)	AS N)	AS N)	AS P)	AS P)	AS FE)	AS MIN)	(PCI/L)	(/
	(00613)	(00631)	(00608)	(00666)	(00671)	(01046)	(01056)	(07000)	(07012)
	(00010)	(00051)	(00000)	(00000)	(000/1)	(01040)	(01030)	(0,000)	(0,012)
440233092115101	0.01	4.4	<0.01		0.02				
***************************************	<0.01	4.3	0.01		<0.01				
440305092273901	<0.01	3.5	<0.01	0.02	0.02	14	<1		22.8
440330092225201	<0.01	<0.05	0.12	<0.01	<0.01	2000	33		0.8
440335092243401	<0.01	10.0	0.02	0.04	0.01	10	< 1		15.3
440333032243401	~0.01	10.0	0.02	0.04	0.01	10	~*		15.5
440336092241801	<0.01	<0.05	<0.01	<0.01	<0.01	5	<1		<0.8
440343092160001	<0.01	<0.05	0.02	<0.01	<0.01	510	36		8.4
440346092155501	<0.01	<0.05	<0.01	<0.01	<0.01	2700	29		<0.8
440347092181801	<0.01	7.0	0.02	0.03	<0.01	<3	<1		
440350092155801	-0.01	7.0	0.02	0.00	-0.01	9	<1		25.7
440030032133001						J			23.7
440352092155701	<0.01	6.70	<0.01	0.03	0.01	9	<1	67	22.9
440353092152001	<0.01	<0.05	<0.01	<0.01	<0.01	280	22		<0.8
440354092180301	<0.01	<0.05	<0.01	<0.01	<0.01	220	-6		<0.8
440411092255801		6.5	-0.02	-0.02					
440412092273201	<0.01	4.1	0.01	<0.01	<0.01	11	<1		15.8
440422002270202	-0.02	7.2	0.02	40.02	-0.02		-		20.0
440415092231901	<0.01	<0.05	0.06	<0.01	<0.01	4100	69		<0.8
440417092255701	<0.01	7.6	<0.01	0.02	<0.01	4	<1	74	25.2
440433092252301	<0.01	5.2	0.03	0.29	0.11	3	<Ĩ		20.1
440455092120601	0.01	<0.05	0.02		<0.01				
11010000220002	<0.01	<0.05	0.05		<0.01				
	-0.01	-0.05	5.05		-0.52				
440534092261701	<0.01	3.0	0.02	<0.01	<0.01	10	<1		13.2
440535092233501	<0.01	<0.05	0.05	<0.01	<0.01	5500	59		<0.8
440545092264801	0.01	<0.05	0.02	<0.01	<0.01	79	11		<0.8
		.,		- ,					- • -

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

REDWOOD COUNTY

STATION NUMBER	IDI	OCAL ENT- I- IER		I)ATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	
441753095160801	110N-37V	V-27 DADDCD)		·22-91 ·08-91	1420 1210	20.00	44	
STATION NUMBER	PERIOD CO PRIOR CO TO SAM- DO PLING AN (MIN) (US	PE- IFIC DN- PE JCI- (SIA ICE AR S/CM) UNI	ND- AI D WA TS) (DE	URE TER S G C) (YGEN, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
441753095160801	30 10	20 6.	 7 12	 i.5	0.1	<0.01 0.15	6.9 14	0.04 0.07	0.01 <0.01
			WABASHA	COUNTY					
STATION NUMBER	IDI	OCAL ENT- I- IER		I	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004)
441638092042401	109N-11V	V-01 AACBAD)		·11-91 ·18-91	1620 1240	72.00	98 98	5
STATION NUMI	SPE- CIFIC CON- DUCT- BER ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	SOL (MG AS	N, GE ITE NO2+ S- DI VED SOL /L (MG N) AS	N, GE NO3 AMMO S- DI VED SOL /L (MG N) AS	N, PHOP NIA OR: S- DIS VED SOLV /L (MG, N) AS I	THO, S- VED /L
44163809204240	01 558	7.3	 15.0	 7.6	0. <0.			01 0 02 <0	.02 .01

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 WATONWAN COUNTY

STATION	NUMBER	1060	LOCAL IDENT- I- FIER			DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	
440037094	3/2601	106N	32W01DDB0	1		03-26-91 07-22-91	1225 1800	12.86	22 22	
STATION	NUMBER	PUMP OR FLOW PERIOD FRIOR TO SAM- PLING (MIN) (72004)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
440037094	372601	23	 1930	6.6	12.0	3.0	<0.01 <0.01	<0.05 <0.05	0.03 0.04	<0.01 <0.01
				YELLOW	MEDICINE	COUNTY				
STATION	NUMBER		LOCAL IDENT- I- FIER			DATE	TIME	LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	
444307096	245801	115N	-46W-33CC	DDAA		03-27-91 08-07-91	1650 1725	 10.00	25 25	
STATION	NUMBER	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)
444307096	245801	26	570	6.9	12.5	0.1	<0.01 <0.01	<0.05 <0.05	0.14 0.16	<0.01 <0.01

461458094295000 PRECIPITATION STATION AT CAMP RIPLEY, MN

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

LOCATION.--Lat 46°14'58", long 94°29'50", in NE% sec.18, T.132 N., R.30 W., Morrison County, Hydrologic Unit 07010104, approximately 500 ft southwest of the abandoned Gilgal Church and approximately 5 miles south of the town of Pillager.

PERIOD OF RECORD. -- October 1983 to current year (weekly composite).

INSTRUMENTATION. -- Samples are collected in a polyethylene bucket by an electrically operated wet/dry collector. A recording rain gage and a standard U.S. Weather Service bulk rain gage measure rainfall quantity.

REMARKS.--An observer collects only the wetfall bucket and services the rain gages every Tuesday around 0900 hours. The observer weighs the bucket and if there is enough wetfall, determines specific conductance and pH. The bucket with its remaining contents is then sent to the Illinois State Water Survey Laboratory for analysis.

CHEMICAL ANALYSIS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	GREEN- WICH MEAN TIME	TOTAL PRECIP- ITATION FOR DEFINED PERIOD (IN) (00193)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	SPEC. CONDUC- TANCE LAB ATM DEP WET TOT (US/CM) (83156)	PH FIELD ATM DEP WET T (UNITS) (83106)	PH LAB ATM DEP WET T (UNITS) (83107)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)
OCT								
02-09 OCT	1000	1.95	8.7	9.7	5.25	6.53	0.620	0.100
09-16 OCT	1200	0.0		19.3		6.79	0.700	0.170
16-23	1000	1.58	14.7	11.0	4.70	5.07	0.310	0.033
OCT 23-30	1300							
OCT 30- NOV 06	1430	0.01		19.6		6.43	0.830	0.172
NOV								
06-13 NOV	1100	0.0						
13-20 NOV	1100	0.03		16.6		5.09	0.300	0.067
20-27	1100	0.20	54.7	46.7	4.60	4.62	0.340	0.046
NOV 27- DEC 04	1100	0.30	7.1	5.8	4.70	5.63	0.110	0.026
DEC 04-11	1500	0.0						
DEC 11-18	1100	0.01		8.3		5.71	0.100	0.023
DEC								
18-25 DEC 25 1990-	1100	0.75	11.4	10.0	4.90	4.76	0.190	0.024
JAN 01 1991	1600	0.0						
JAN 01-08	1600	0.02						
JAN 08-15	1300	0.24	10.9	9.5	4.70	4.75	0.050	0.008
JAN 15-22								
JAN	1700	0.11	11.2	9.1	4.90	5.78	0.330	0.061
22-29 JAN 29-	1600	0.15	4.4	3.3	5.10	5.80	0.090	0.015
FEB 05	1800	0.0	 `	1.3		5.78	<0.010	<0.003
FEB 05-12	1300	0.0		1.7		5.80	<0.010	<0.003
FEB 12-19	1300	0.58	10.7	9.1	4.80	4.89	0.100	0.017

461458094295000 - PRECIPITATION STATION AT CAMP RIPLEY, MN--Continued

CHEMICAL ANALYSIS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	GREEN- WICH MEAN TIME	TOTAL PRECIP- ITATION FOR DEFINED PERIOD (IN) (00193)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	SPEC. CONDUC- TANCE LAB ATM DEP WET TOT (US/CM) (83156)	PH FIELD ATM DEP WET T (UNITS) (83106)	PH LAB ATM DEP WET T (UNITS) (83107)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)
FEB								
19-26	1530	0.40	4.9	3.7	5.10	5.67	0.100	0.012
FEB 26- MAR 05	1430	0.07						
MAR	1400	0.07						
05-12	1300	0.0		1.7		5.85	0.090	<0.003
MAR 12-19	1330	0.0		3.4		5.96	<0.010	0.003
MAR		0.0		0.4		3.50	-0.010	0.000
19-26 MAR 26-	1400	1.94	11.2	14.7	4.50	4.67	0.210	0.019
APR 02	1500	0.03		25.0		6.82	0.820	0.237
APR								
02-09 APR	2130	0.25	17.8	3.8	4.40	5.38	0.100	0.016
09-16	1930	2.22	12.0	13.1	4.60	4.62	0.100	0.015
APR					-			
16-23 APR	2000	0.06	27.1	14.7	4.60	6.44	0.220	0.041
23-30	1930	1.97	11.2	9.3	4.80	5.05	0.160	0.024
APR 30-								
MAY 07 May	1930	1.25	8.4	5.9	5.10	5.08	0.070	0.006
07-14	1930	0.46	17.1	10.6	5.40	6.42	0.400	0.056
MAY	4000					- 10		
14-21 May	1930	0.10	13.5	12.4	5.65	6.49	0.380	0.088
21-28	2030	0.95	6.5	5.9	5.40	6.13	0.150	0.030
MAY 28- JUN 04	2000	1.04	7.8	7.2	5.50	5.47	0.190	0.019
JUN	2000	1.04	7.0	7.2	3.30	3.47	0.150	0.019
04-11	1930	0.05		35.6		6.14	1.17	0.164
JUN 11-18	2030	2.37	7.0	6.5	5.40	5.96	0.090	0.013
JUN	2000	2.57	7.0	0.5	3.40		0.030	0.013
18-25	1930	1.65	9.6	8.8	5.00	5.95	0.400	0.043
JUN 25- JUL 02	1730	5.08	8.4	8.8	5.40	6.18	0.460	0.069
JUL			0.4	0.0				
02-09	1930	0.14	8.8	7.6	5.10	5.80	0.280	0.047

461458094295000 - PRECIPITATION STATION AT CAMP RIPLEY, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

GREEN- WICH MEAN TIME	TOTAL PRECIP- ITATION FOR DEFINED PERIOD (IN) (00193)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	SPEC. CONDUC- TANCE LAB ATM DEP WET TOT (US/CM) (83156)	PH FIELD ATM DEP WET T (UNITS) (83106)	PH LAB ATM DEP WET T (UNITS) (83107)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)
1930	0.60	7.7	7.1	5.10	5.17	0.120	0.041
1430	0.42	17.4	15.7		6.50	0.830	0.150
1930	0.45	10.0	8.3		5.19	0.120	0.017
1930	0.30	6.3	4.4		5.32	0.080	0.014
1600	0.01		99.1		3.81		
1930	0.18	10.2	9.1		6.01	0.340	0.077
1930	0.99	12.3	11.7	4.80	5.58	0.280	0.029
1400	1.39	10.9	7.1		5.88	0.170	0.026
1930	1.05	8.7	7.8		4.99	0.040	0.003
2000	0.26	9.4	9.1		5.58	0.140	0.022
1930	0.08	6.0	4.8		5.97	0.080	0.017
2000	0.54	22.7	24.1		6.72	1.55	0.252
	1930 1430 1930 1930 1930 1930 1930 1400 1930 2000	GREEN- WICH MEAN MICH MEAN TIME 1930 1930 1930 1930 0.60 1430 0.42 1930 0.45 1930 0.30 1600 0.01 1930 0.18 1930 0.99 1400 1.39 1930 1.05 2000 0.26 1930 0.08	GREEN- WICH MEAN MICH MEAN MEAN TIME MEAN TIME MEAN TIME MEAN MEAN MEAN MEAN MEAN MEAN MEAN ME	GREEN- WICH MEAN TIME PERIOD (IN) (00193) 0.60 0.42 1930 0.42 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.45 1930 0.47 1930 0.48 10.0	GREEN- WICH MICH MEAN FOR FIELD FOR FIELD ATM DEP TIME FERIOD (IN) (00193) 0.60 7.7 7.1 1930 0.60 7.7 7.1 15.10 1430 0.42 17.4 15.7 1930 0.30 6.3 4.4 1930 0.30 6.3 4.4 1930 0.18 10.2 9.1 1930 0.99 12.3 11.7 4.80 1400 1.39 10.9 7.8 1930 0.26 9.4 9.1 1930 0.26 9.4 9.1 1930 0.08 6.0 4.8	GREEN- WICH MEAN TIME POR FIELD FOR FIELD LAB	GREEN-WICH PRECIP- CONDUC- TANCE TAN

461458094295000 - PRECIPITATION STATION AT CAMP RIPLEY, MN--Continued

CHEMICAL ANALYSIS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	SODIUM ATM DEP WET DIS (MG/L) (83138)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	NI- TROGEN NITRATE ATM DEP WET DIS AS NO3 (MG/L) (83071)	NI- TROGEN AMMON. ATM DEP WET DIS AS NH4 (MG/L) (83047)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS PO4 (MG/L) (83111)
OCT							
02-09	0.048	0.057	1.01	0.05	0.78	0.500	<0.020
OCT 09-16	0.478	0.203	1.23	0.47	1.51	0.800	<0.090
OCT	0.470	0.203	1.23	0.47	1.51	0.800	-0.090
16-23	0.021	0.023	1.50	0.07	1.32	0.590	<0.020
OCT 23-30							
OCT 30-							
NOV 06	0.693	0.068	1.54	0.32	3.05	0.720	<0.070
NOV							
06-13 Nov							
13-20	0.239	0.035	2.35	0.15	3.46	0.750	<0.020
NOV							
20-27 NOV 27-	0.102	0.042	7.12	0.38	7.20	2.44	<0.020
DEC 04	0.067	0.044	0.49	0.07	1.10	0.510	<0.020
DEC							
04-11 DEC							
11-18	0.057	0.064	0.57	0.23	1.59	0.610	<0.080
DEC							
18-25 DEC 25 1990-	0.031	0.018	0.29	0.05	1.78	0.100	<0.020
JAN 01 1991							
JAN							
01-08							
JAN 08-15	0.043	0.010	0.15	0.08	1.54	0.080	<0.020
JAN							
15-22	0.146	0.031	0.25	0.18	2.64	0.560	<0.020
JAN 22-29	0.044	0.013	0.11	0.07	0.63	0.130	<0.020
JAN 29-	0.044	0.010	0.11	0.07	0.00	0.100	-0.020
FEB 05	0.022	0.006	<0.03	0.08	0.05	0.020	<0.020
FEB 05-12	0.051	0.005	<0.03	0.08	0.04	0.260	<0.020
FEB	0.031	0.003	-0.03	0.00	0.04	0.200	-0.020
12-19	0.027	0.007	0.32	0.06	1.68	0.200	<0.020

461458094295000 - PRECIPITATION STATION AT CAMP RIPLEY, MN--Continued

CHEMICAL ANALYSIS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	SODIUM ATM DEP WET DIS (MG/L) (83138)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	NI- TROGEN NITRATE ATM DEP WET DIS AS NO3 (MG/L) (83071)	NI- TROGEN AMMON. ATM DEP WET DIS AS NH4 (MG/L) (83047)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS PO4 (MG/L) (83111)
FEB							
19-26 FEB 26-	0.060	0.014	0.18	0.10	0.64	0.170	<0.020
MAR 05							
MAR 05-12	0.033	<0.003	0.04	0.05	0.08	<0.020	<0.020
MAR							
12-19 MAR	0.014	0.005	0.03	<0.03	0.05	<0.020	<0.020
19-26	0.034	0.011	1.81	0.07	1.14	0.360	<0.020
MAR 26- APR 02	0.573	0.035	2.37	0.17	2.13	1.54	<0.020
APR							
02-09 APR	0.024	<0.003	0.26	0.05	0.51	0.030	<0.020
09-16	0.038	0.015	1.08	0.05	0.86	0.090	<0.020
APR 16-23	0.038	0.034	1.58	0.08	2.39	1.43	<0.020
APR 23-30	0.035	0.028	1.22	0.05	0.93	0.360	<0.020
APR 30- MAY 07	0.015	0.007	0.53	0.03	0.59	0.120	<0.020
MAY 07-14	0.117	0.054	0.94	0.14	1.00	0.780	<0.020
MAY							
14-21 MAY	0.066	0.025	0.65	0.11	1.67	1.08	<0.020
21-28	0.012	0.018	0.45	0.04	0.92	0.510	<0.020
MAY 28- JUN 04	0.030	0.015	0.83	0.07	1.15	0.400	<0.020
JUN						'	
04-11 Jun	0.293	0.328	3.86	0.64	4.22	1.00	<0.120
11-18	0.013	0.013	0.66	0.06	1.03	0.590	<0.020
JUN 18-25	0.040	0.021	1.22	0.09	1.45	0.550	<0.020
JUN 25- JUL 02	0.066	0.037	0.82	0.09	1.01	0.520	<0.020
JUL 02-09	0.053	0.146	0.56	0.21	1.01	0.210	<0.020

461458094295000 - PRECIPITATION STATION AT CAMP RIPLEY, MN--Continued

CHEMICAL ANALYSIS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	SODIUM ATM DEP WET DIS (MG/L) (83138)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	NI- TROGEN NITRATE ATM DEP WET DIS AS NO3 (MG/L) (83071)	NI- TROGEN AMMON. ATM DEP WET DIS AS NH4 (MG/L) (83047)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS PO4 (MG/L) (83111)
JUL							
09-16	0.025	0.020	0.69	0.06	0.99	0.190	<0.020
JUL 16-23	0.070	0.091	1.53	0.16	2.39	1.09	<0.020
JUL	0.070	0.091	1.55	0.16	2.39	1.09	~0.020
23-30	0.013	<0.003	1.13	0.04	0.93	0.490	<0.020
JUL 30- AUG 06	0.020	0.005	0.35	0.04	0.56	0.140	0.090
AUG	0.020	0.003	0.33	0.04	0.50	0.140	0.090
06-13							
AUG 13-20	0 102	0.074	1 05	0.10	1 41	0 500	-0.000
AUG	0.103	0.074	1.25	0.13	1.41	0.500	<0.020
20-27	0.022	0.048	1.64	0.08	1.99	1.00	<0.020
AUG 27-	0 007	0.000	1 00	0.04	0.60	0.510	-0.000
SEP 03 SEP	0.027	0.020	1.28	0.04	0.69	0.540	<0.020
03-10	0.016	0.003	0.94	0.04	0.63	0.310	<0.020
SEP							
10-17 SEP	0.036	0.029	1.15	0.07	1.51	0.700	<0.020
17-24	0.078	0.040	0.51	0.13	0.37	0.200	0.080
SEP 24-							
OCT 01	0.134	0.198	2.28	0.11	2.31	1.46	<0.020

	Page		Page
Access to WATSTORE data	23	Cfs/day, definition of	24
Accuracy of the records	20	Champlin, Elm Creek near	74-76
Acre-foot, definition of	24	Chanarambie Creek near Edgerton	156
Adenosine triphosphate, definition of	24	Chemical oxygen demand, definition of	24
Aitkin, Mississippi River at	54	Chemical quality of precipitation	261-266
Akeley, Williams Lake near	41-47	Chippewa River near Milan	90
Aldrich, Leaf River near	149	Chlorophyll, definition of	25
Algae, definition of	24	Classification of records	20-21
Algal growth potential, definition of	24	Clearwater, Mississippi River at	150
Analysis of samples collected at water-		Clearwater River basin high-flow partial-	
quality partial-record stations	163-199	record stations in	150
Annual 7-day minimum	25	Clearwater River near South Haven	150
Anoka, Mississippi River near	77 -7 9	Collection and computation of ground-water	
Appleton, Pomme de Terre River at	85	levels	22
Aquifer, definition of	24	ground-water quality	23
Arrangement of records	21	stage and water discharge	17
Artesian, definition of	24	Color unit, definition of	25
Artificial substrate, definition of	27	Concord, Milliken Creek near	154
Ashley Creek near Sauk Centre	150	Contents, definition of	25
Ash mass, definition of	24	Control, definition of	25
Austin, Cedar River near	142	Cooperation	1
		Cottonwood River near New Ulm	97-98
Bacteria, definition of	24	near Springfield	152
Bancroft, Bancroft Creek at	155	Courtland, Little Cottonwood River near	99
Bancroft Creek at Bancroft	155	Crooked Creek at Freeburg	155
Beaver Creek at Beaver Falls	152	Crooked Creek basin, high-flow partial-record	
at Valley Springs, SD	155	stations in	154
Beaver Falls, Beaver Creek at	152	Crooked Creek near Hinckley	153
Beaver, Whitewater River near	136-137	Cross Lake, Pine River at Cross Lake Dam, at	56
Becida, Hennepin Creek near	148	Pine River Reservoir at	55
Bed load, definition of	27	Crow River at Rockford	71
discharge, definition of	27	North Fork, at Paynesville	150
Bed material, definition of	24	North Fork, near Kingston	151
Bemidji, Mississippi River at	148	Crow River basin, gaging-station records in	71
Mississippi River near	38	high-flow partial-record stations in	150-151
Big Lake, Elk River near	70	Crow Wing River basin, gaging-station	
Big Sioux River basin, high-flow partial-		records in	58-63
record stations in	155-156	high-flow partial-record stations in	149
Big Stone City, SD, Big Stone Lake near	82	Crow Wing River near Pillager	63
Whetstone River near	81	Cubic foot per second, definition of	25
Big Stone Lake near Big Stone City, SD	82	Cubic feet per second per square mile,	
Biochemical oxygen demand, definition of	24	definition of	25
Biomass, definition of	24		
Blue Earth River, East Branch, near Walters	152	Data collection and computation,	
near Rapidan	103	ground-water levels	22
Blue-green algae, definition of	26	ground-water quality	23
Bottom material, definition of	24	stage and water discharge	17
Boy River near Remer	148	Data presentation, ground-water levels	22
Brainerd, Gull Lake near	61	ground-water quality	23
Gull River at Gull Lake Dam near	62	stage and water discharge	18-20
Mississippi River at	57	surface-water quality	21-22
Buffalo Creek near Glencoe	151	Data table of daily mean values	19
Burr, Florida Creek near	151	Deer River, Mississippi River at	
		Winnibigoshish Dam near	40
Cannon River at Northfield	153	Winnibigoshish Lake near	39
Cannon River basin, gaging-station records in.	128	Definition of terms	24-29
high-flow partial-record stations in	153	Delft, Watonwan River near	152
Cannon River below Sabre Lake near Kilkenny	153	Des Moines River at Jackson	143
Cat River near Nimrod	149	Des Moines River basin, gaging-station	
Cedar River near Austin	142	records in	143
Cells/volume, definition of	24	high-flow partial-record stations in	155
Comlan Fort Fort Des Maines Divers et	155	Distance definition of	26

	Page		Page
Discharge at partial-record stations and		Gull Lake near Brainerd	61
miscellaneous sites	144-162	Gull River at Gull Lake Dam, near Brainerd	62
high-flow partial-record stations	145-156		
miscellaneous sites	157-162	Hardness of water, definition of	25
Discharge, definition of	. 25	Harris, Goose Creek at	153
Discontinued gaging stations	xi-xiv	Hawk Creek near Maynard	151 111-112
Dissolved, definition of	25 25	Henderson, High Island Creek near Hennepin Creek near Becida	148
Diversity index, definition of		High-flow partial-record stations	145-156
Downstream order system and station number,	. 23	High Island Creek near Henderson	111-112
definition of	17	Hill City. Smith Creek near	148
Drainage area, definition of	25	Hillman Creek near Pierz	149
Drainage basin, definition of	25	Hinckley, Crooked Creek near	153
Dry mass, definition of	24	Houston, Root River near	141
Dunnel, Fourmile Creek near	155	South Fork Root River near	154
		Hydrographs showing comparison of water	
East Branch Blue Earth River near Walters	152	levels in 1991 to long-term levels in	11-1/ 10
East Fork Des Moines River near Celyon	155	different aquifers	
Edgerton, Chanarambie Creek near	156 130-133	Hydrologic bench-mark network, definition of Hydrologic conditions, graphs or maps of.3,6-9	11-14 16
Elba, North Fork Whitewater River near Elbow Lake, Pomme de Terre River near	150-155	Hydrologic unit, definition of	25
Elk River near Big Lake	70	nyarotogic unit, derinitation of	2.
Elm Creek basin, gaging-station records in	74-76	Identifying estimated daily discharge	20
Elm Creek near Champlin	74-76	Introduction	1
near Trimont	152	Instantaneous discharge, definition of	25
Empire, Vermillion River near	125-127	Iowa River basin, gaging-station records in	142
Explanation of the records	15-23	high-flow partial-record stations in	155
Factors for converting Inch-Pound Units		Jackson, Des Moines River at	143
to International System (SI)		Johnsburg, Little Cedar River near	155
UnitsInside ba	ck cover	Johnson Creek basin, high-flow partial-record	
Faribault, Straight River near	128	stations in	150
Fecal coliform bacteria, definition of	24	Johnson Creek near St. Augusta	150
Fecal streptococcal bacteria, definition of	24	Jordan, Minnesota River near	113-115
Federal Dam, Leech Lake at	48	Y 113 - Plane Ola Labor Porada mana	150
Leech Lake River at	49	Kettle River, Glaisby Brook near	153 121
Florida Creek near Burr Fort Ripley, Mississippi River near	151 64	Kettle River below Sandstone	153
Nokasippi River near	149	Kingston, North Fork Crow River near	151
Fourmile Creek near Dunnell	155	Knife River near Mora	122
Freeburg, Crooked Creek at	155		
		Laboratory measurements, surface-water quality	21
Gage height, definition of	25	Lac qui Parle, Lac qui Parle River near	86
Gaging station, definition of	. 25	Minnesota River near	87-89
Gaging stations, discontinued	xi-xiv	Lac qui Parle River near Lac qui Parle	86
records Bivor noon	33-143	Lakes and Reservoirs:	
Garden City, Watonwan River near	100-102 138	Big Stone Lake at Ortonville near Big Stone City, SD	82
Garvin Brook basin, gaging-station	100	Gull Lake near Brainerd	61
records in	138	Leech Lake at Federal Dam	48
Gaylord, Middle Branch Rush River near	153	Mille Lacs Lake at Cove Bay near Onamia	72
Glaisby Brook near Kettle River	153	Pokegama Lake near Grand Rapids	50
Glencoe, Buffalo Creek near	151	Pine River Reservoir at Cross Lake	55
Goose Creek at Harris	153	Sandy Lake at Libby	52
Grand Rapids, Mississippi River at	51	Williams Lake near Akeley	41-47
Pokegama Lake near	50	Winnibigoshish Lake near Deer River	38
Granite Falls, Yellow Medicine River near	94	Lanesboro, Root River near	154
Graph showing comparison of dissolved solids		Latitude-longitude system for wells and	
concentrations	8	miscellaneous sites	17
discharge at three long-term gaging		Leaf River near Aldrich	148
stations	6-7	Leech Lake at Federal Dam	48
nitrate concentrations	9 26	Leech Lake River at Federal Dam Leech Lake River basin, gaging-station	41
Green algae, definition of	245-260	records in	41-49
Ground-water-level records, by county	191-244	high-flow partial-record stations in	148
Ground-water levels, records of		measurements made at miscellaneous sites in	158
in summary of hydrologic conditions	10-16	Le Sueur River near Rapidan	104-106
Ground-water records, by county, quality	245-260	Libby, Sandy Lake at	52

Page Page Sandy River at Sandy Lake Dam at...... 119-120 53 at Nininger...... List of counties for which ground-waterat Prescott, WI..... level records are published..... 69 viii-x at St. Cloud...... for which ground-water-quality records at St. Paul...... 116-118 are published..... at Winnibigoshish Dam, near Deer River.... 40 List of gaging stations, in downstream order, at Winona..... 139-140 for which records are published...... vi-vii near Anoka..... 77-79 Little Cedar River near Johnsburg..... 155 near Bemidji..... 38 Little Chippewa River near Starbuck..... 151 near Fort Ripley..... 64 Little Cottonwood River near Courtland...... 99 near Royalton..... 65-67 Little Minnesota River near Peever, SD...... R٨ Mississippi River main stem, measurements Little Rock River near Rushmore..... 156 made at miscellaneous sites in...... 158 Little Sioux River basin, high-flow Montevideo, Minnesota River at..... 91-93 partial-record stations in...... 156 Spring Creek near..... 151 Little Sioux River near Spafford...... 156 Mora, Knife River near..... 122 Long Prairie, Long Prairie River at...... 60 National Geodetic Vertical Datum of 1929 Long Prairie River at Long Prairie...... 60 Luverne, Rock River at..... 156 (NGVD), definition of..... 25-26 National stream-quality accounting network Mankato, Minnesota River at..... 107-110 (NASQAN), explanation of...... 15.26 Map of Minnesota, ground-water observation National trends network (NTN), explanation of. 15,26 wells..... 192-193 Natural substrate, definition of........ 27 annual precipitation............. 3 New Prague, Sand Creek near........ 153 high-flow partial record stations...... 146-147 New Ulm. Cottonwood River near....... 97-98 lake and stream-gaging stations..... 34-35 Nimrod, Cat River near.......... 149 surface water-quality stations..... 36-37 Nininger, Mississippi River at.......... 119-120 Maple River near Rapidan...... 152 Nokasippi River basin, high-flow partialrecord stations in..... Marshall, Redwood River near...... 95 149 Maynard, Hawk Creek near..... 151 Nokasippi River near Fort Ripley...... 149 150 Mean concentration, definition of...... 27 North Fork Crow River at Paynesville...... Mean discharge, definition of....... 151 25 near Kingston..... North Fork Whitewater River near Elba...... 130-133 Methylene blue active substance. definition of..... 25 Northfield, Cannon River at...... 153 Numbering system for wells and Metamorphic stage, definition of...... 25 Micrograms per gram, definition of...... 25 miscellaneous sites........... 17 25 Micrograms per kilogram, definition of...... Micrograms per liter, definition of...... Odessa, Yellow Bank River near....... 84 25 Middle Branch Rush River near Gaylord...... Onamia, Mille Lacs Lake at Cove Bay near..... 72 153 Onsite measurement and collection...... 21 Middle Fork Whitewater River near State Organic mass, definition of...... 24 Park Group Camp near St. Charles...... 154 Organism, definition of...... 26 near St. Charles..... 134-135 count/area, definition of...... 26 Milan, Chippewa River near..... 90 Mille Lacs Lake at Cove Bay near Onamia..... 72 count/volume, definition of...... 26 152 Milligrams per liter, definition of...... 25 Ormsby, South Fork Watonwan River near...... Ortonville, Minnesota River at........ Milligrams of carbon per area or volume per unit time for periphyton, macrophytes, Osage, Straight River at County Highway 125 and phytoplankton..... 26 near..... 58 Other records available..... 20 Milligrams of oxygen per area or volume per unit time for periphyton, macrophytes, 26 Palisade, Willow River below..... 149 and phytoplankton..... Milliken Creek near Concord...... Parameter code numbers..... 26 154 Minnesota City, Garvin Brook near..... 138 Park Rapids, Straight River near..... 59 Partial-record station, definition of...... 26 107-110 Minnesota River at Mankato..... at Montevideo...... -156 91-93 discharge at Particle size, definition of...... 26 at Ortonville...... 83 113-115 Particle-size classification, definition of ... 26 near Jordan..... Paynesville, North Fork Crow River at...... 150 87-89 near Lac qui Parle..... Peever, SD, Little Minnesota River near..... R٨ Minnesota River basin, gaging-station Percent composition, definition of...... 26 records in..... 80-115 Periphyton, definition of...... 26 high-flow partial-record stations in...... Pesticides, definition of...... 26 measurements made at miscellaneous sites in 159-161 Miscellaneous sites, discharge Phytoplankton, definition of..... 26 157-162 26 measurements at..... Piccocurie. definition of...... 149 Mississippi River at Aitkin..... 54 Pierz, Hillman Creek near..... 63 Pillager, Crow Wing River near..... 148 at Bemidji....... 149 at Brainerd..... 57 Sevenmile Creek near..... 56 at Clearwater.................. 150 Pine River at Cross Lake Dam, at Cross Lake... at Grand Rapids..... 51 near Pine River..... 149

	Page		Page
Pine River basin, gaging-station records in	55-56	St. Cloud, Mississippi River at	69
high-flow partial-record stations in	149	Sauk River near	68
Pine River, Pine River near	149	St. Croix Falls, WI, St. Croix River at	123
Pine River Reservoir at Cross Lake	55	St. Croix River at St. Croix Falls, WI	123
Pipestone Creek near Pipestone	155	St. Croix River basin, gaging-station	
Pipestone, Pipestone Creek near	155	records in	121-123
Plankton, definition of	26	high-flow partial-record stations in	153
Platte River above Royalton	150	St. Francis, Rum River near	73
Platte River basin, high-flow partial-		St. Paul, Mississippi River at	116-118
record stations in	150	Sand Creek near New Prague	153
Pokegama Lake near Grand Rapids	50	Sandstone, Kettle River below	121 52
Polychlorinated biphenyls, definition of	26 85	Sandy Lake at Libby Sandy River at Sandy Lake Dam, at Libby	53
Pomme de Terre River at Appleton near Elbow Lake	151	Sandy River basin, gaging-station records in	52-53
Precipitation, chemical quality of	261-266	Sauk Centre, Ashley Creek near	150
in summary of hydrologic conditions	1-3	Sauk River basin, high-flow partial-record	250
Prescott, WI, Mississippi River at	124	stations in	150
Primary productivity, definition of	26	Sauk River near St. Cloud	68
Publication on techniques of water-resources		tributary at Spring Hill	150
investigations	30-32	Sediment, definition of	27
		collection of	21
Quality of ground-water, by county	245-260	Seven-day 10-year low flow, definition of	27
		Sevenmile Creek near Pillager	149
Radiochemical program, definition of	15,27	Sleepy Eye, Spring Creek near	152
Ramsey Creek near Redwood Falls	151	Smith Creek basin, high-flow partial-record	
Rapidan, Blue Earth River near	103	stations in	148
Le Sueur River near	104-106	Smith Creek near Hill City	148
Maple River near	152	Sodium-adsorption ratio, definition of	27
Records, accuracy of	20	Solute, definition of	27
other available	20	South Fork Root River near Houston	154
Records of ground-water levels	22	Watonwan River near Ormsby	152
ground-water quality	23	Zumbro River at Rochester	129
stage and water discharge	17	South Haven, Clearwater River near	150
surface-water quality	20-23	Spafford, Little Sioux River near	156 15
Recoverable from bottom material, definition of	27	Special networks and programs	27
Redwood Falls, Ramsey Creek near	151	Spring Creek near Montevideo	151
Redwood River near	96	near Sleepy Eye	152
Redwood River near Marshall	95	Springfield, Cottonwood River near	152
near Redwood Falls	96	Spring Hill, Sauk River tributary at	150
Remark codes, surface-water quality	22	Stage-discharge relation, definition of	27
Remer, Boy River near	148	Starbuck, Little Chippewa River near	151
Reservoirs (see lakes and reservoirs)		Station identification numbers	17
Return period, definition of	27	Station manuscript	18
Rochester, South Fork Zumbro River at	129	Statistics of monthly mean data	19
Rock River at Luverne	156	Straight River at County Highway 125 near	
Rockford, Crow River at	71	Osage	58
Root River at Rushford	154	Straight River near Faribault	128
near Houston	141	near Park Rapids	59
near Lanesboro	154	Streamflow, definition of	27
South Fork, near Houston	154	in summary of hydrologic conditions	2
Root River basin, gaging station records in	141	Substrate, definition of	27
high-flow partial-record stations in	154	Summary of hydrologic conditions	1-16
Royalton, Mississippi River near	65-67	ground-water levels	10-16
Platte River above	150	precipitationstreamflow	1-3 2
Rum River basin, gaging-station records in Rum River near St. Francis	72-73 73	water quality	2,8-10
Runoff at streamflow stations (table 1)	73 4-5	Summary statistics	2,0 10
Runoff in inches, definition of	4-3 27	Surface area, definition of	27
Rush Creek near Rushford	154	Surficial bed material, definition of	28
Rushford, Root River at	154	Suspended, definition of	28
Rush Creek near	154	Suspended recoverable, definition of	28
Rushmore, Little Rock River near	156	Suspended sediment, definition of	27
Rush River, Middle Branch near Gaylord	153	Suspended-sediment concentration,	
		definition of	27
St. Augusta, Johnson Creek near	150	Suspended-sediment discharge, definition of	27
St. Charles, Middle Fork Whitewater River		Suspended-sediment load, definition of	27
near	134-135	Suspended total, definition of	28
Middle Fork Whitewater River near State			
Park Group Camp near	154	Table of runoff at streamflow stations	4-5

	Page		Page
Taxonomy, definition of	28	South Fork near Ormsby	152
Thermograph, definition of	28	Weighted average, definition of	28
Time-weighted average, definition of	28	Wet mass	24
Tons per acre-foot, definition of	28	Whetstone River near Big Stone City, SD	81
Tons per day, definition of	28	Whitewater River basin, gaging-station	
Total, definition of	28	records in	130-137
bottom material, definition of	28	high-flow partial-record stations in	154
coliform bacteria, definition of	24	Whitewater River, Middle Fork, near	
load, definition of	28	St. Charles	134-135
organism count, definition of	26	Middle Fork near State Park Group	
recoverable, definition of	28	Camp near St. Charles	154
sediment discharge, definition of	27	North Fork, near Elba	130-133
sediment load, definition of	27	Williams Lake near Akeley	41-47
Trimont, Elm Creek near	152	Willow River basin, high-flow partial-record	
Tritium network, explanation of	15,28	stations in	149
•	-	Willow River below Palisade	149
Valley Springs, SD., Beaver Creek near	155	Winnibigoshish Lake near Deer River	39
Vermillion River basin, gaging-station		Winona, Mississippi River at	139-140
records in	125-127	WDR, definition of	28
Vermillion River near Empire	125-127	WRD, definition of	28
-		WSP, definition of	- 29
Walters, Blue Earth River East Branch near	152		
Water quality, in summary of hydrologic		Yellow Bank River near Odessa	84
conditions	2-10	Yellow Medicine River near Granite Falls	94
Water-quality records, analyses of samples			
collected at ground-water wells	245-260	Zooplankton, definition of	26
collected at partial-record stations	163-190	Zumbro Falls, Zumbro River at	154
Water temperature, surface-water quality	21	Zumbro River at Zumbro Falls	154
Water year, definition of	28	South Fork, at Rochester	129
Watonwan River near Delft	152	Zumbro River basin, gaging-station records	
near Garden City	100-102	in	129-131
		high-flow partial-record stations in	153-154

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	7.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm²)
	4.047x10 ⁻³	square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785×10°	liters (L)
	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^{3}	cubic meters (m ³)
	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x101	cubic decimeters (dm³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m ³)
	2.447x10 ⁻³	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233×10^{-3}	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
AND OF BUILDING AND	2.832x101	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm³/s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm³/s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey 702 Post Office Building St. Paul, MN 55101

U.S.MAIL

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

SPECIAL 4th CLASS BOOK RATE